三相異步電動機論文(三相異步電動機論文參考文獻)
三相異步電動機論文(三相異步電動機論文參考文獻)
大家好,很高興有機會和大家一起探討三相異步電動機論文的問題。我將用專業的態度回答每個問題,同時分享一些具體案例和實踐經驗,希望這能對大家有所啟發。
文章目錄列表:
1.求<淺析電動機電機啟動常見故障>論文2.乞“電氣工程及其自動化”論文一篇,關于供電系統的即可(專科類),謝謝
3.畢業論文
4.基于MATLAB/SIMULINK的三相異步電動機變頻控制調速系統仿真 求這個畢業論文的資料
5.我們用的交流電 是3相 為什么不是2相 或4相呢?
6.數控機床畢業論文

求<淺析電動機電機啟動常見故障>論文
淺談電動機電機啟動常見故障
摘要:電動機在我區的使用很廣泛,它遍及各行各業的各個角落,在生
產、生活過程中發揮著極其重要的作用。但由于大部分電機使用年限較長,電
機燒毀的事故常有發生,而且呈上升趨勢,嚴重影響著生產、生活的安全、可
靠、長周期運行。現針對電機燒毀原因及相應對策做一分析和研究。
關鍵詞:電動機電機啟動故障
1電機繞組局部燒毀的原因及對策
1.1由于電機本身密封不良,加之環境跑冒滴漏,使電機內部進
水或進入其它帶有腐蝕性液體或氣體,電機繞組絕緣受到浸蝕,最嚴
重部位或絕緣最薄弱點發生一點對地、相間短路或匝間短路現象,從
而導致電機繞組局部燒壞。
相應對策:①盡量消除工藝和機械設備的跑冒滴漏現象;②檢修
時注意搞好電機的每個部位的密封,例如在各法蘭涂少量704密封
膠,在螺栓上涂抹油脂,必要時在接線盒等處加裝防滴濺盒,如電機
暴漏在易侵入液體和污物的地方應做保護罩;③對在此環境中運行
的電機要縮短小修和中修周期,嚴重時要及時進行中修。
1.2由于軸承損壞,軸彎曲等原因致使定、轉子磨擦(俗稱掃膛)
引起鐵心溫度急劇上升,燒毀槽絕緣、匝間絕緣,從面造成繞組匝間
短路或對地“放炮”。嚴重時會使定子鐵心倒槽、錯位、轉軸磨損、端蓋
報廢等。軸承損壞一般由下列原因造成:①軸承裝配不當,如冷裝時
不均勻敲擊軸承內圈使軸受到磨損,導致軸承內圈與軸承配合失去
過盈量或過盈量變小,出現跑內圈現象,裝電機端蓋時不均勻敲擊導
致端蓋軸承室與軸承外圈配合過松出現跑外圈現象。無論跑內圈還
是跑外圈均會引起軸承運行溫升急劇上升以致燒毀,特別是跑內圈
故障會造成轉軸嚴重磨損和彎曲。但間斷性跑外圈一般情況下不會
造成軸承溫度急劇上升,只要軸承完好,允許間斷性跑外圈現象存
在。②軸承腔內未清洗干凈或所加油脂不干凈。例如軸承保持架內的
微小剛性物質未徹底清理干凈,運行時軸承滾道受損引起溫升過高
燒毀軸承。③軸承重新更換加工,電機端蓋嵌套后過盈量大或橢圓度
超標引起軸承滾珠游隙過小或不均勻導致軸承運行時磨擦力增加,
溫度急劇上升直至燒毀。④由于定、轉子鐵心軸向錯位或重新對轉軸
機加工后精度不夠,致使軸承內、外圈不在一個切面上而引起軸承運
行“吃別勁”后溫升高直至燒毀。⑤由于電機本體運行溫升過高,且軸
承補充加油脂不及時造成軸承缺油甚至燒毀。⑥由于不同型號油脂
混用造成軸承損壞。⑦軸承本身存在制造質量問題,例如滾道銹斑、
轉動不靈活、游隙超標、保持架變形等。⑧備機長期不運行,油脂變
質,軸承生銹而又未進行中修。
相應對策:①卸裝軸承時,一般要對軸承加熱至80℃~100℃,
如采用軸承加熱器,變壓器油煮等,只有這樣,才能保證軸承的裝配
質量。②安裝軸承前必須對其進行認真仔細的清洗,軸承腔內不能留
有任何雜質,填加油脂時必須保證潔凈。③盡量避免不必要的轉軸機
加工及電機端蓋嵌套工作。④組裝電機時一定要保證定、轉子鐵心對
中,不得錯位。⑤電機外殼潔凈見本色,通風必須有保證,冷卻裝置不
能有積垢,風葉要保持完好。⑥禁止多種潤滑油脂混用。⑦安裝軸承
前先要對軸承進行全面仔細的完好性檢查。⑧對于長期不用的電機,
使用前必須進行必要的解體檢查,更新軸承油脂。
1.3由于繞組端部較長或局部受到損傷與端蓋或其它附件相磨
擦,導致繞組局部燒壞。
相應對策:電機在更新繞組時,必須按原數據嵌線。檢修電機時
任何剛性物體不準碰及繞組,電機轉子抽芯時必須將轉子抬起,杜絕定、轉子鐵芯相互磨擦。動用明火時必須將繞組與明火隔離并保證
有一定距離。電機回裝前要對繞組的完好性進行認真仔細的檢查
確診。
1.4由于長時間過載或過熱運行,繞組絕緣老化加速,絕緣最
薄弱點碳化引起匝間短路、相間短路或對地短路等現象使繞組局
部燒毀。
相應對策:①盡量避免電動機過載運行。②保證電動機潔凈并通
風散熱良好。③避免電動機頻繁啟動,必要時需對電機轉子做動平衡
試驗。
1.5電機繞組絕緣受機械振動(如啟動時大電流沖擊,所拖動設
備振動,電機轉子不平衡等)作用,使繞組出現匝間松馳、絕緣裂紋等
不良現象,破壞效應不斷積累,熱脹冷縮使繞組受到磨擦,從而加速
了絕緣老化,最終導致最先碳化的絕緣破壞直至燒毀繞組。
相應對策:①盡可能避免頻繁啟動,特別是高壓電機。②保證被
拖動設備和電機的振動值在規定范圍內。
2三相異步電動機一相或兩相繞組燒毀(或過熱)的原因及對策
如果出現電動機一相或兩相繞組燒壞(或過熱),一般都是因為
缺相運行所致。當電機不論何種原因缺相后,電動機雖然尚能繼續運
行,但轉速下降,滑差變大,其中B、C兩相變為串聯關系后與A相并
聯,在負荷不變的情況下,A相電流過大,長時間運行,該相繞組必然
過熱而燒毀。
為三相異步電動機繞組為Y接法的情況:電源缺相后,電動機
尚可繼續運行,但同樣轉速明顯下降,轉差變大,磁場切割導體的速
率加大,這時B相繞組被開路,A、C兩相繞組變為串聯關系且通過
電流過大,長時間運行,將導致兩相繞組同時燒壞。
特殊情況下,如果停止的電動機缺一相電源合閘時,一般只會發
生嗡嗡聲而不能啟動,這是因為電動機通入對稱的三相交流電會在
定子鐵心中產生圓形旋轉磁場,但當缺一相電源后,定子鐵心中產生
的是單相脈動磁場,它不能使電動機產生啟動轉矩。因此,電源缺相
時電動機不能啟動。但在運行中,電動機氣隙中產生的是三相諧波成
分較高的橢圓形旋轉磁場,所以,正在運行中的電動機缺相后仍能運
轉,只是磁場發生畸變,有害電流成分急劇增大,最終導致繞組燒壞。
相應對策:無論電動機是在靜態還是動態,缺相運行帶來的直接
危害就是電機一相或兩相繞組過熱甚至燒壞。與此同時,由于動力電
纜的過流運行加速了絕緣老化。特別是在靜態時,缺相會在電機繞組
中產生幾倍于額定電流的堵轉電流。其繞組燒壞的速度比運行中突
然缺相更快更嚴重。所以在我們對電機進行日常維護和檢修的同時,
必須對電機相應的MCC功能單元進行全面的檢修和試驗。尤其是
要認真檢查負荷開關、動力線路、靜動觸點的可靠性。杜絕缺相運行。
總之,無論是從事電氣的工作人員或是管理人員,都要從實際出發,
切實落實好設備的維護與維修,以保證生產的正常運行,促進我區的
經濟建設順利發展。
乞“電氣工程及其自動化”論文一篇,關于供電系統的即可(專科類),謝謝
題目:低壓網功率因數對供電企業的影響
系部:
專業:電氣工程及其自動化
姓名:
班級:
學號:
指導教師:
摘要
隨著我國電力的不斷發展,對于供用電的要求也越來越嚴格,它是我們日常生活中不可缺少的部分,是整個國民經濟的重要組成部分,它直接影響著工農業生產的發展和人民生活的提高,是當今社會經濟發展和人民群眾日常生活不可缺少的主要能源。對廣大供電企業來說,用戶功率因數的高低,直接關系到電力網中的功率損耗和電能損耗,關系到供電線路的電壓損失和電壓波動,而且關系到節約用電和整個供電區域的供電質量,這是眾所周知的道理。因此,提高電力系統的功率因數,已成為電力工業中一個重要課題,而提高電力系統的功率因數,首先就要提高各用戶的功率因數。文中簡要集中探討了影響電網功率因數的主要因素以及低壓無功補償的幾種使用方法,以及確定無功補償容量從而提高電力系統功率因數的一般方法。
[關鍵詞] 功率因數 影響因素 補償方法 容量確定
目錄
一、緒論 4
二、主要內容: 6
1、影響功率因數的主要因素 6
1.1、電感性設備和電力變壓器是耗用無功功率的主要設備 6
1.2、供電電壓超出規定范圍也會對功率因數造成很大影響 7
1.3、電網頻率的波動也會對異步電動機和變壓器的磁化無功功率造成一定的影響 7
2、低壓網的無功補償 8
2.1、低壓網無功補償的一般方法 8
2.1.1、 隨機補償 8
2.1.2、 隨器補償 8
2.1.3、跟蹤補償 9
2.2、 采用適當措施,設法提高系統自然功率因數 9
2.2.1、合理選用電動機 10
2.2.2、 提高異步電動機的檢修質量 10
2.2.3、 采用同步電動機或異步電動機同步運行補償 10
2.2.4、 正確選擇變壓器容量提高運行效益 11
3、 功率因數的人工補償 12
3.1、 變電站最常用的安裝并聯電容器組 12
3.2 并聯補償移相電容器,應滿足以下電壓和容量的要求 12
3.3 分相補償 13
三、結束語 14
四、參考文獻 15
一、緒論
許多用電設備均是根據電磁感應原理工作的,如配電變壓器、電動機等,它們都是依靠建立交變磁場才能進行能量的轉換和傳遞。為建立交變磁場和感應磁通而需要的電功率稱為無功功率,無功功率是恒量能量轉換規模的物理量;因此在供用電系統中除了需要有功電源外,還需要無功電源,兩者缺一不可。
在功率三角形中,有功功率P與視在功率S的比值,稱為功率因數COSφ,其計算公式為:COSφ=P/S
在電力網的運行中,功率因數反映了電源輸出的視在功率被有效利用的程度,我們希望的是功率因數越大越好。這樣電路中的無功功率可以降到最小,視在功率將大部分用來供給有功功率,從而提高電能輸送的功率。
用戶功率因數的高低,對于電力系統發、供、用電設備的充分利用,有著顯著的影響。無功功率補償,又叫就地補償,適當提高用戶的功率因數,不但可以充分的發揮發、供電設備的生產能力、減少線路損失、改善電壓質量,而且可以提高用戶用電設備的工作效率和為用戶本身節約電能。因此,對于全國廣大供電企業,不但可以減輕上一級電網補償的壓力,改善提高用戶功率因數,而且能夠有效地降低電能損失,減少用戶電費。其社會效益及經濟效益都會是非常顯著的。
二、主要內容:
1、影響功率因數的主要因素
1.1、電感性設備和電力變壓器是耗用無功功率的主要設備
大量的電感性設備,如異步電動機、感應電爐、交流電焊機等設備是無功功率的主要消耗者。據有關的統計,在工礦企業所消耗的全部無功功率中,異步電動機的無功消耗占了60%~70%;而在異步電動機空載時所消耗的無功又占到電動機總無功消耗的60%~70%。所以要改善異步電動機的功率因數就要防止電動機的空載運行并盡可能提高負載率。電力變壓器消耗的無功功率一般約為其額定容量的10%~15%,它的空載無功功率約為滿載時的1/3。因而,為了改善電力系統和企業的功率因數,變壓器不應空載運行或長期處于低負載運行狀態。
1.2、供電電壓超出規定范圍也會對功率因數造成很大影響
當供電電壓高于額定值的10%時,由于磁路飽和的影響,無功功率將增長得很快,據有關資料統計,當供電電壓為額定值的110%時,一般無功將增加35%左右。當供電電壓低于額定值時,無功功率也相應減少而使它們的功率因數有所提高。但供電電壓降低會影響電氣設備的正常工作。由Q=UI*Sin?推出Sin?=Q∕UI,所以,應當采取措施使電力系統的供電電壓盡可能保持穩定。
1.3、電網頻率的波動也會對異步電動機和變壓器的磁化無功功率造成一定的影響
綜上所述,我們知道了影響電力系統功率因數的一些主要因素,因此我們要尋求一些行之有效的、能夠使低壓電力網功率因數提高的一些實用方法,使低壓網能夠實現無功的就地平衡,達到降損節能的效果。
2、低壓網的無功補償
2.1、低壓網無功補償的一般方法
低壓無功補償我們通常采用的方法主要有三種:隨機補償、隨器補償和跟蹤補償。下面簡單介紹這三種補償方式的適用范圍及使用該種補償方式的優缺點。
2.1.1、 隨機補償
隨機補償就是根據個別用電設備對無功的需要量將單臺或多臺低壓電容器組分散地與用電設備并接,它與用電設備共用一套斷路器。通過控制、保護裝置與電機同時投切。隨機補償適用于補償個別大容量且連續運行(如大中型異步電動機)的無功消耗,以補勵磁無功為主。此種方式可較好地限制農網無功峰荷。
隨機補償的優點是:用電設備運行時,無功補償投入,用電設備停運時,補償設備也退出,不會造成無功倒送,而且不需頻繁調整補償容量。具有投資少、占位小、安裝容易、配置方便靈活、維護簡單、事故率低等優點。
2.1.2、 隨器補償
隨器補償是指將低壓電容器通過低壓開關接在配電變壓器二次側,以無功補償配電變壓器空載無功的補償方式。配變在輕載或空載時的無功負荷主要是變壓器的空載勵磁無功,配變空載無功是農網無功負荷的主要部分,對于輕負載的配變而言,這部分損耗占供電量的比例很大,從而導致電費單價的增加,不利于電費的同網同價。
隨器補償的優點:接線簡單、維護管理方便、能有效地補償配變空載無功,限制農網無功基荷,使該部分無功就地平衡,從而提高配變利用率,降低無功網損,具有較高的經濟性,是目前無功補償中常用的手段之一。
2.1.3、跟蹤補償
跟蹤補償是指以無功補償投切裝置作為控制保護裝置,將低壓電容器組補償在大用戶0.4KV母線上的補償方式。適用于100KVA以上的專用配電用戶,可以替代隨機、隨器兩種補償方式,補償效果好。
跟蹤補償的優點是運行方式靈活,運行維護工作量小,比前兩種補償方式壽命相對延長、運行更可靠。但缺點是控制保護裝置復雜、首期投資相對較大。但當這三種補償方式的經濟性接近時,應優先選用跟蹤補償方式。
2.2、 采用適當措施,設法提高系統自然功率因數
提高自然功率因數是不需要任何補償設備投資,僅采取各種管理上或技術上的手段來減少各種用電設備所消耗的無功功率,這是一種最經濟的提高功率因數的方法。下面將對提高自然功率因數的措施做一些簡要的介紹。
2.2.1、合理選用電動機
合理選擇電動機,使其盡可能在高負荷率狀態下運行。在選擇電動機時,既要注意它們的機械特性,又要考慮它們的電氣指標。舉例說,三相異步電動機(100KW)在空載時功率因數僅為0.11,1/2負載時約為0.72,而滿負載時可達0.86。所以核算負荷小于40%的感應電動機,應換以較小容量的電動機,并合理安排和調整工藝流程,改善運行方式,限制空載運轉。故從節約電能和提高功率因數的觀點出發,必須正確合理的選擇電動機的容量。
2.2.2、 提高異步電動機的檢修質量
實驗表明,異步電動機定子繞組匝數變動和電動機定、轉子間的氣隙變動是對異步電動機無功功率的大小有很大影響。因此檢修時要特別注意不使電動機的氣隙增大,以免使功率因數降低。
2.2.3、 采用同步電動機或異步電動機同步運行補償
由電機原理可知,同步電動機消耗的有功功率取決于電動機上所帶機械負荷的大小,而無功取決于轉子中的勵磁電流大小,在欠激狀態時,定子繞組向電網“吸取”無功,在過激狀態時,定子繞組向電網“送出”無功。因此,只要調節電機的勵磁電流,使其處于過激狀態,就可以使同步電機向電網“送出”無功功率,減少電網輸送給工礦企業的無功功率,從而提高了工礦企業的功率因數。異步電動機同步運行就是將異步電動機三相轉子繞組適當連接并通入直流勵磁電流,使其呈同步電動機運行狀態,這就是“異步電動機同步化”。因而只要調節電機的直流勵磁電流,使其呈過激狀態,即可以向電網輸出無功,從而達到提高低壓網功率因數的目的。
2.2.4、 正確選擇變壓器容量提高運行效益
對于負載率比較低的變壓器,一般采取“撤、換、并、停”等方法,使其負載率提高到最佳值,從而改善電網的自然功率因數。如:對平均負荷小于30%的變壓器宜從電網上斷開,通過聯絡線提高負荷率。
通過以上一些提高加權平均功率因數和自然功率因數的敘述,或許我們已經對“功率因數”這個簡單的電力術語有了更深的了解和認識。知道了功率因數的提高對電力企業的深遠影響,下面我們將簡單介紹對用電設備進行人工補償的方式和對補償容量的確定方法。
3、 功率因數的人工補償
功率因數是工廠電氣設備使用狀況和利用程度的具有代表性的重要指標,也是保證電網安全、經濟運行的一項主要指標。供電企業僅僅依靠提高自然功率因數的辦法已經不能滿足工廠對功率因數的要求,工廠自身還需要裝設補償裝置,對功率因數進行人工補償。
3.1、 變電站最常用的安裝并聯電容器組
從上圖可以看出,在原來的電路中根據基爾霍夫定律,流入的電流等于流出的電流,但是并聯接入電容器,在相量圖中得知?角明顯小于原來的角,因此,能提高功率因數,提高線路電能傳輸能力,減少線路上的損耗。
3.2 并聯補償移相電容器,應滿足以下電壓和容量的要求
Ue?c≥Ug?c
nQg?c≥Qc
式中
Ue?c——電容器的額定電壓(KV)
Ug?c——電容器的工作電壓(KV)
n——并聯的電容器總數
Qg?c——電容器的工作容量(Kvar)
Qc——電容器的補償容量(Kvar)
3.3 分相補償
在民用建筑中大量使用的是單相負荷,照明、空調等由于負荷變化的隨機性大,容易造成三相負載的嚴重不平衡,尤其是住宅樓在運行中三相不平衡更為嚴重。由于調節補償無功功率的采樣信號取自三相中的任意一相,造成未檢測的兩相要么過補償,要么欠補償。如果過補償,則過補償相的電壓升高,造成控制、保護元件等用電設備因過電壓而損壞;如果欠補償,則補償相的回路電流增大,線路及斷路器等設備由于電流的增加而導致發熱被燒壞。這種情況下用傳統的三相無功補償方式,不但不節能,反而浪費資源,難以對系統的無功補償進行有效補償,補償過程中所產生的過、欠補償等弊端更是對整個電網的正常運行帶來了嚴重的危害。
對于三相不平衡及單相配電系統采用分相電容自動補償是解決上述問題的一種較好的辦法,其原理是通過調節無功功率參數的信號取自三相中的每一相,根據每相感性負載的大小和功率因數的高低進行相應的補償,對其它相不產生相互影響,故不會產生欠補償和過補償的情況。
三、結束語
本文淺談了功率因數對廣大供電企業的影響以及提高功率
因數所帶來的經濟效益和社會效益,尤其是最重要的線損(最為
重要的是降損,分為技術降損和管理降損),介紹了影響功率因
數的主要因素以及提高功率因數的一般方法,還闡述了如何確定
無功功率的補償容量及無功功率的三種人工補償的具體方式。我
們只有端正自己的認知態度,很好的去歸納,總結這些知識的重
要部分,做好自己的本質工作,并且能在此基礎上再更上一個臺
階,用自己的實際行動,為供電事業貢獻出自己的微薄之力。
四、參考文獻
1、運新,《電監察》水利電力出版社
2、靳龍章 丁毓山,《網無功補償實用技術》國水利水電出版社
畢業論文
機械設計課程設計計算說明書
一、傳動方案擬定…………….……………………………….2
二、電動機的選擇……………………………………….…….2
三、計算總傳動比及分配各級的傳動比……………….…….4
四、運動參數及動力參數計算………………………….…….5
五、傳動零件的設計計算………………………………….….6
六、軸的設計計算………………………………………….....12
七、滾動軸承的選擇及校核計算………………………….…19
八、鍵聯接的選擇及計算………..……………………………22
設計題目:V帶——單級圓柱減速器 第四組
德州科技職業學院青島校區 設計者:####
指導教師:%%%%
二○○七年十二月
計算過程及計算說明
一、傳動方案擬定
第三組:設計單級圓柱齒輪減速器和一級帶傳動
(1) 工作條件:連續單向運轉,載荷平穩,空載啟動,使用年限10年,小批量生產,工作為二班工作制,運輸帶速允許誤差正負5%。
(2) 原始數據:工作拉力F=1250N;帶速V=1.70m/s;
滾筒直徑D=280mm。
二、電動機選擇
1、電動機類型的選擇: Y系列三相異步電動機
2、電動機功率選擇:
(1)傳動裝置的總功率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.95×0.982×0.97×0.99×0.98×0.96
=0.82
(2)電機所需的工作功率:
P工作=FV/1000η總
=1250×1.70/1000×0.82
=2.6KW
3、確定電動機轉速:
計算滾筒工作轉速:
n筒=60×960V/πD
=60×960×1.70/π×280
=111r/min
按書P7表2-3推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍I’a=3~6。取V帶傳動比I’1=2~4,則總傳動比理時范圍為I’a=6~24。故電動機轉速的可選范圍為n筒=(6~24)×111=666~2664r/min
符合這一范圍的同步轉速有750、1000、和1500r/min。
根據容量和轉速,由有關手冊查出有三種適用的電動機型號:因此有三種傳支比方案:綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,可見第2方案比較適合,則選n=1000r/min
。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為Y132S-6。
其主要性能:額定功率:3KW,滿載轉速960r/min,額定轉矩2.0。質量63kg。
三、計算總傳動比及分配各級的偉動比
1、總傳動比:i總=n電動/n筒=960/111=8.6
2、分配各級偉動比
(1) 據指導書,取齒輪i齒輪=6(單級減速器i=3~6合理)
(2) ∵i總=i齒輪×I帶
∴i帶=i總/i齒輪=8.6/6=1.4
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=n電機=960r/min
nII=nI/i帶=960/1.4=686(r/min)
nIII=nII/i齒輪=686/6=114(r/min)
2、 計算各軸的功率(KW)
PI=P工作=2.6KW
PII=PI×η帶=2.6×0.96=2.496KW
PIII=PII×η軸承×η齒輪=2.496×0.98×0.96
=2.77KW
3、 計算各軸扭矩(N?mm)
TI=9.55×106PI/nI=9.55×106×2.6/960
=25729N?mm
TII=9.55×106PII/nII
=9.55×106×2.496/686
=34747.5N?mm
TIII=9.55×106PIII/nIII=9.55×106×2.77/114
=232048N?mm
五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本表得:kA=1.2
Pd=KAP=1.2×3=3.9KW
由課本得:選用A型V帶
(2) 確定帶輪基準直徑,并驗算帶速
由課本得,推薦的小帶輪基準直徑為
75~100mm
則取dd1=100mm
dd2=n1/n2?dd1=(960/686)×100=139mm
由課本P74表5-4,取dd2=140mm
實際從動輪轉速n2’=n1dd1/dd2=960×100/140
=685.7r/min
轉速誤差為:n2-n2’/n2=686-685.7/686
=0.0004<0.05(允許)
帶速V:V=πdd1n1/60×1000
=π×100×960/60×1000
=5.03m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心矩
根據課本得
0. 7(dd1+dd2)≤a0≤2(dd1+dd2)
0. 7(100+140)≤a0≤2×(100+140)
所以有:168mm≤a0≤480mm
由課本P84式(5-15)得:
L0=2a0+1.57(dd1+dd2)+(dd2-dd1)2/4a0
=2×400+1.57(100+140)+(140-100)2/4×400
=1024mm
根據課本表7-3取Ld=1120mm
根據課本P84式(5-16)得:
a≈a0+Ld-L0/2=400+(1120-1024/2)
=400+48
=448mm
(4)驗算小帶輪包角
α1=1800-dd2-dd1/a×600
=1800-140-100/448×600
=1800-5.350
=174.650>1200(適用)
(5)確定帶的根數
根據課本(7-5) P0=0.74KW
根據課本(7-6) △P0=0.11KW
根據課本(7-7)Kα=0.99
根據課本(7-23)KL=0.91
由課本式(7-23)得
Z= Pd/(P0+△P0)KαKL
=3.9/(0.74+0.11) ×0.99×0.91
=5
(6)計算軸上壓力
由課本查得q=0.1kg/m,由式(5-18)單根V帶的初拉力:
F0=500Pd/ZV(2.5/Kα-1)+qV2
=[500×3.9/5×5.03×(2.5/0.99-1)+0.1×5.032]N
=160N
則作用在軸承的壓力FQ,
FQ=2ZF0sinα1/2=2×5×158.01sin167.6/2
=1250N
2、齒輪傳動的設計計算
(1)選擇齒輪材料及精度等級
考慮減速器傳遞功率不大,所以齒輪采用軟齒面。小齒輪選用40Cr調質,齒面硬度為240~260HBS。大齒輪選用45鋼,調質,齒面硬度220HBS;根據課本選7級精度。齒面精糙度Ra≤1.6~3.2μm
(2)按齒面接觸疲勞強度設計
由d1≥76.43(kT1(u+1)/φdu[σH]2)1/3
確定有關參數如下:傳動比i齒=6
取小齒輪齒數Z1=20。則大齒輪齒數:
Z2=iZ1=6×20=120
實際傳動比I0=120/2=60
傳動比誤差:i-i0/I=6-6/6=0%<2.5% 可用
齒數比:u=i0=6
由課本取φd=0.9
(3)轉矩T1
T1=9550×P/n1=9550×2.6/960
=25.N?m
(4)載荷系數k
由課本取k=1
(5)許用接觸應力[σH]
[σH]= σHlimZNT/SH由課本查得:
σHlim1=625Mpa σHlim2=470Mpa
由課本查得接觸疲勞的壽命系數:
ZNT1=0.92 ZNT2=0.98
通用齒輪和一般工業齒輪,按一般可靠度要求選取安全系數SH=1.0
[σH]1=σHlim1ZNT1/SH=625×0.92/1.0Mpa
=575
[σH]2=σHlim2ZNT2/SH=470×0.98/1.0Mpa
=460
故得:
d1≥766(kT1(u+1)/φdu[σH]2)1/3
=766[1×25.9×(6+1)/0.9×6×4602]1/3mm
=38.3mm
模數:m=d1/Z1=38.3/20=1.915mm
根據課本表9-1取標準模數:m=2mm
(6)校核齒根彎曲疲勞強度
根據課本式
σF=(2kT1/bm2Z1)YFaYSa≤[σH]
確定有關參數和系數
分度圓直徑:d1=mZ1=2×20mm=40mm
d2=mZ2=2×120mm=240mm
齒寬:b=φdd1=0.9×38.3mm=34.47mm
取b=35mm b1=40mm
(7)齒形系數YFa和應力修正系數YSa
根據齒數Z1=20,Z2=120由表相得
YFa1=2.80 YSa1=1.55
YFa2=2.14 YSa2=1.83
(8)許用彎曲應力[σF]
根據課本P136(6-53)式:
[σF]= σFlim YSTYNT/SF
由課本查得:
σFlim1=288Mpa σFlim2 =191Mpa
由圖6-36查得:YNT1=0.88 YNT2=0.9
試驗齒輪的應力修正系數YST=2
按一般可靠度選取安全系數SF=1.25
計算兩輪的許用彎曲應力
[σF]1=σFlim1 YSTYNT1/SF=288×2×0.88/1.25Mpa
=410Mpa
[σF]2=σFlim2 YSTYNT2/SF =191×2×0.9/1.25Mpa
=204Mpa
將求得的各參數代入式(6-49)
σF1=(2kT1/bm2Z1)YFa1YSa1
=(2×1×2586.583/35×22×20) ×2.80×1.55Mpa
=8Mpa< [σF]1
σF2=(2kT1/bm2Z2)YFa1YSa1
=(2×1×2586.583/35×22×120) ×2.14×1.83Mpa
=1.2Mpa< [σF]2
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=m/2(Z1+Z2)=2/2(20+120)=140mm
(10)計算齒輪的圓周速度V
V=πd1n1/60×1000=3.14×40×960/60×1000
=2.0096m/s
六、軸的設計計算
輸入軸的設計計算
1、按扭矩初算軸徑
選用45#調質,硬度217~255HBS
根據課本并查表,取c=115
d≥115 (2.304/458.2)1/3mm=19.7mm
考慮有鍵槽,將直徑增大5%,則
d=19.7×(1+5%)mm=20.69
∴選d=22mm
2、軸的結構設計
(1)軸上零件的定位,固定和裝配
單級減速器中可將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面由軸肩定位,右面用套筒軸向固定,聯接以平鍵作過渡配合固定,兩軸承分別以軸肩和大筒定位,則采用過渡配合固定
(2)確定軸各段直徑和長度
工段:d1=22mm 長度取L1=50mm
∵h=2c c=1.5mm
II段:d2=d1+2h=22+2×2×1.5=28mm
∴d2=28mm
初選用7206c型角接觸球軸承,其內徑為30mm,
寬度為16mm.
考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,并考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+16+55)=93mm
III段直徑d3=35mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=45mm
由手冊得:c=1.5 h=2c=2×1.5=3mm
d4=d3+2h=35+2×3=41mm
長度與右面的套筒相同,即L4=20mm
但此段左面的滾動軸承的定位軸肩考慮,應便于軸承的拆卸,應按標準查取由手冊得安裝尺寸h=3.該段直徑應取:(30+3×2)=36mm
因此將Ⅳ段設計成階梯形,左段直徑為36mm
Ⅴ段直徑d5=30mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=100mm
(3)按彎矩復合強度計算
①求分度圓直徑:已知d1=40mm
②求轉矩:已知T2=34747.5N?mm
③求圓周力:Ft
根據課本式得
Ft=2T2/d2=69495/40=1737.375N
④求徑向力Fr
根據課本式得
Fr=Ft?tanα=1737.375×tan200=632N
⑤因為該軸兩軸承對稱,所以:LA=LB=50mm
(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=316N
FAZ=FBZ=Ft/2=868N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=235.3×50=11.765N?m
(3)繪制水平面彎矩圖(如圖c) 截面C在水平面上彎矩為:
MC2=FAZL/2=631.61455×50=31.58N?m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(11.7652+31.582)1/2=43.345N?m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=35N?m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=1,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[43.3452+(1×35)2]1/2=55.5N?m
(7)校核危險截面C的強度
由式(6-3)
σe=Mec/0.1d33=55.5/0.1×353
=12.9MPa< [σ-1]b=60MPa
∴該軸強度足夠。
輸出軸的設計計算
1、按扭矩初算軸徑
選用45#調質鋼,硬度(217~255HBS)
根據課本取c=115
d≥c(P3/n3)1/3=115(2.77/114)1/3=34.5mm
取d=35mm
2、軸的結構設計
(1)軸的零件定位,固定和裝配
單級減速器中,可以將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面用軸肩定位,
右面用套筒軸向定位,周向定位采用鍵和過渡配合,兩軸承分別以軸承肩和套筒定位,周向定位則用過渡
配合或過盈配合,軸呈階狀,左軸承從左面裝入,齒輪套筒,右軸承和皮帶輪依次從右面裝入。
(2)確定軸的各段直徑和長度
初選7207c型角接球軸承,其內徑為35mm,寬度為17mm。考慮齒輪端面和箱體內壁,軸承端
面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長41mm,安裝齒輪段長度為輪轂寬度為2mm。
(3)按彎扭復合強度計算
①求分度圓直徑:已知d2=300mm
②求轉矩:已知T3=271N?m
③求圓周力Ft:根據課本式得
Ft=2T3/d2=2×271×103/300=1806.7N
④求徑向力式得
Fr=Ft?tanα=1806.7×0.36379=657.2N
⑤∵兩軸承對稱
∴LA=LB=49mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=657.2/2=328.6N
FAZ=FBZ=Ft/2=1806.7/2=903.35N
(2)由兩邊對稱,書籍截C的彎矩也對稱
截面C在垂直面彎矩為
MC1=FAYL/2=328.6×49=16.1N?m
(3)截面C在水平面彎矩為
MC2=FAZL/2=903.35×49=44.26N?m
(4)計算合成彎矩
MC=(MC12+MC22)1/2
=(16.12+44.262)1/2
=47.1N?m
(5)計算當量彎矩:根據課本得α=1
Mec=[MC2+(αT)2]1/2=[47.12+(1×271)2]1/2
=275.06N?m
(6)校核危險截面C的強度
由式(10-3)
σe=Mec/(0.1d)=275.06/(0.1×453)
=1.36Mpa<[σ-1]b=60Mpa
∴此軸強度足夠
七、滾動軸承的選擇及校核計算
根據根據條件,軸承預計壽命
16×365×10=58400小時
1、計算輸入軸承
(1)已知nⅡ=686r/min
兩軸承徑向反力:FR1=FR2=500.2N
初先兩軸承為角接觸球軸承7206AC型
根據課本得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=315.1N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=315.1N FA2=FS2=315.1N
(3)求系數x、y
FA1/FR1=315.1N/500.2N=0.63
FA2/FR2=315.1N/500.2N=0.63
根據課本得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本取f P=1.5
根據課本式得
P1=fP(x1FR1+y1FA1)=1.5×(1×500.2+0)=750.3N
P2=fp(x2FR1+y2FA2)=1.5×(1×500.2+0)=750.3N
(5)軸承壽命計算
∵P1=P2 故取P=750.3N
∵角接觸球軸承ε=3
根據手冊得7206AC型的Cr=23000N
由課本式得
LH=16670/n(ftCr/P)ε
=16670/458.2×(1×23000/750.3)3
=1047500h>58400h
∴預期壽命足夠
2、計算輸出軸承
(1)已知nⅢ=114r/min
Fa=0 FR=FAZ=903.35N
試選7207AC型角接觸球軸承
根據課本得FS=0.063FR,則
FS1=FS2=0.63FR=0.63×903.35=569.1N
(2)計算軸向載荷FA1、FA2
∵FS1+Fa=FS2 Fa=0
∴任意用一端為壓緊端,1為壓緊端,2為放松端
兩軸承軸向載荷:FA1=FA2=FS1=569.1N
(3)求系數x、y
FA1/FR1=569.1/903.35=0.63
FA2/FR2=569.1/930.35=0.63
根據課本得:e=0.68
∵FA1/FR1<e ∴x1=1
y1=0
∵FA2/FR2<e ∴x2=1
y2=0
(4)計算當量動載荷P1、P2
取fP=1.5
P1=fP(x1FR1+y1FA1)=1.5×(1×903.35)=1355N
P2=fP(x2FR2+y2FA2)=1.5×(1×903.35)=1355N
(5)計算軸承壽命LH
∵P1=P2 故P=1355 ε=3
根據手冊7207AC型軸承Cr=30500N
根據課本得:ft=1
根據課本式得
Lh=16670/n(ftCr/P) ε
=16670/76.4×(1×30500/1355)3
=2488378.6h>58400h
∴此軸承合格
八、鍵聯接的選擇及校核計算
軸徑d1=22mm,L1=50mm
查手冊得,選用C型平鍵,得:
鍵A 8×7 GB1096-79 l=L1-b=50-8=42mm
T2=48N?m h=7mm
根據課本P243(10-5)式得
σp=4T2/dhl=4×48000/22×7×42
=29.68Mpa<[σR](110Mpa)
2、輸入軸與齒輪聯接采用平鍵聯接
軸徑d3=35mm L3=48mm T=271N?m
查手冊P51 選A型平鍵
鍵10×8 GB1096-79
l=L3-b=48-10=38mm h=8mm
σp=4T/dhl=4×271000/35×8×38
=101.87Mpa<[σp](110Mpa)
3、輸出軸與齒輪2聯接用平鍵聯接
軸徑d2=51mm L2=50mm T=61.5Nm
查手冊選用A型平鍵
鍵16×10 GB1096-79
l=L2-b=50-16=34mm h=10mm
據課本得
σp=4T/dhl=4×6100/51×10×34=60.3Mpa<[σp]
基于MATLAB/SIMULINK的三相異步電動機變頻控制調速系統仿真 求這個畢業論文的資料
出售與定制Matlab畢業設計和課程設計或者文獻翻譯,成品部分羅列/infocenter?ADUIN=975941553&ADSESSION=1241335843&ADTAG=CLIENT.QQ.1855_QQUrlReportBlankZone.0
你可以在需要的那個帖子下留下****或者直接加該QQ為好友祥談定制您需要的畢業設計.請期待更多的作品,希望得到您的認可,滿足您的畢業要求.
我們用的交流電 是3相 為什么不是2相 或4相呢?
我最開始想著是3相是建立旋轉磁場的最少相數,后來又想到2相也可以建立的,所以只好查資料了,結果是這樣的(尊重作者將他們的名字也寫出了):
readfree 在線 發表于:2009-06-19 11:08 [只看該作者] 第12樓
三相交流電是與輸電技術的發展緊密相連的。
1873年維也納國際博覽會法國弗泰內,使用2km的導線,把一臺用瓦斯發動機拖動的格蘭姆直流發電機,和一臺轉動水泵的電動機連接起來。
1874年,俄國皮羅茨基建立了輸送功率為4.5kW的直流輸電線路,輸送距離一開始是50m,后來增加到1km。然后就開始向高壓輸電發展了。
一開始是直流輸電,但想要傳輸更遠的距離,就必須再提高電壓。在當時的條件下,直流輸電沒條件了:發電機電壓受限制、直流沒有變壓器等等。后來還發生過一場交流、直流輸電之爭。
可見,從交流輸電一開始,并不是三相的,呵呵。1832年,人們就發明了單相交流發電機。1876年、1884年、1885年,單相變壓器得到了發展。問題在于應用交流電驅動工作機械。
交流感應電動機的出現,與“旋轉磁場”這個研究緊密相連。1825年,1879年,1883年都是旋轉磁場發展的節點,1885年,弗拉利斯制成了第一臺兩相感應電動機;1888年他又提出了“利用交流電來產生電動旋轉”這一經典論文。
1888年俄國多布羅斯基發明了三相交流制和效率很高的三相異步電動機,交流輸電的優越性體現出來了。1891年8月25日,第一條三相交流高壓輸電線投運,總長175km。發電機是230kVA,95V,變壓器是200kVA、95/15200,線路末端是兩座13800/112V降壓變電所。
說到優點:與單相、兩相系統比,三相輸電系統效率比較高、用銅節省;三相電機的性能、效率和材料利用比單相、兩相的好。
說為什么是三相的?上面已經講了發展歷史。為什么不是四相的?因為三相的出現后,就把市場霸占了……各種理論全圍繞它進行。沒人搞四相的,呵呵。相數越多,就越復雜,從上面能看出來,最主要的是應用。
wang 在線 發表于:2009-06-22 11:50 [只看該作者] 第18樓
readfree版的回答很精彩,學習了。下面就三相交流電為什么是三相再補充幾點:
1.問題的出處:據說(未考證)這個問題是清華大學電機系一教授在研究生考試時出的考題“為什么電力系統是三相?”,考生自然是沒有回答出來,后來被某位人士當作抨擊中國教育體制的素材引用。樓主是看到了這了素材加以提問還是靈感突發想到的并不是很重要了,只要確定是一個好問題就可以了,值得思考。
2.為什么是三相?是電力的輸送及使用過程中的技術合理性與節省設備投資的綜合平衡結果。原因如下:
a)旋轉磁場:三相是交流電在不使用輔助設備能產生“穩定旋轉磁場”的最小相數,這點最重要,有了旋轉磁場其它的事情就好理解了......。也許有人說了不對,家用電器都用單相,沒有旋轉磁場小電機怎么會轉?其實家用電器是利用通過電容時電流相位超前的特性從單相電源分出來一相與原來的一相產生旋轉磁場,這點不符合上述條件吧?--不使用輔助設備能產生“穩定旋轉磁場”
b)三相交流電相位互差120°,任意兩相之間的線壓相同,使其較之單相交流電有很多優點,它在發電、輸配電以及電能轉換為機械能方面都有明顯的優越性。例如:制造三相發電機、變壓器都較制造單相發電機、變壓器省材料,而且構造簡單、性能優良。又如,用同樣材料所制造的三相電機,其容量比單相電機大50%,三相旋轉電機的瞬時功率是恒定的,其瞬時轉矩也是恒定的,運轉就比較平穩;在輸送同樣功率的情況下,三相輸電線較單相輸電線,可節省有色金屬25%,而且電能損耗較單相輸電時少。
c)使用4相、5相、6相...不可以嗎?
當然可以。使用更多相時會使發電、輸配電及用電環節變得復雜,輸電線路根數要增加,發電機、變壓器、電動機等設備也趨于復雜化,增加制造成本;當然大容量設備假定使用四相交流電單從設備制造上也許會更合理,但電網就不同了。另外三相不平衡已經引起很多問題了,相數多了會不會更困難?
寫道這兒,想到了里想到了另外一個問題:發動機的問題,農村用的手扶拖拉機是單缸發動機,夏利是三缸,桑塔納是四缸。。。。,奔馳寶馬用到了六缸、八缸甚至更多,功率(馬力)越大,使用的缸數越多。雖然四缸車比較普遍,但也不能否認六缸發動機的合理性吧,當然不同的車可以行駛在同一道路上,可以并存;電網就不同了,只能統一。
d)類似的問題還有頻率為什么是50Hz或60Hz?這也是在考慮綜合成本的情況下確定的,頻率太低電力轉換成動力的效率就會太低,頻率太高,輸變電的損耗會增加以及遠程輸電的功率因數會下降,選擇50Hz、60Hz也是有其道理的。
數控機床畢業論文
數控機床旋轉進給系統的狀態空間模型及性能分析
摘要:高性能多坐標數控機床的擺頭、轉臺等旋轉進給系統多采用永磁同步伺服電機進行直接驅動,其控制問題較常規進給系統更為復雜。因此建立更為科學的適用于直接驅動的永磁同步電機的數學模型對提高旋轉進給系統的控制水平具有重要意義。本文提出在矢量控制的基礎上建立直接驅動用永磁同步電機的狀態空間模型的方法,并運用現代控制理論對系統的能控性、可觀測性及穩定性等進行分析和計算以及對系統進行極點配置,并用Simulink進行了系統仿真,為數控機床旋轉進給伺服系統的設計和分析提供了理論基礎和分析方法。
關鍵詞:旋轉進給;直接驅動;永磁同步電機;
中圖分類號:TP391 文獻標識碼:A 文章編號:1009-0134(2007)08-0040-05State space model and performance analysis of numerical controlmachine rotary feed systemZHANG Ao, ZHOU Kai(Department of Precision Instrument and Mechanics,Tsinghua University,Beijing 100084,China)Abstract: Rotary feed system such as pendulum head and revolving table of high-powered multicoordinatesnumerical control machine adopts PMSM to drive directly. It's more complex tocontrol than the conventional feed system. So it's significative to set up mathematic modelof PMSM which is applicable for the direct drive more scientifically in order to improve thecontrol level of rotary feed system. Thus a modeling of PMSM method for state spaceequation modeling of PMSM based on vector control is proposed. The controllability,observability, stability and Pole assignment are analysed by modern control theory. And thesystem emulation is finished by Simulink. This method offers theoretical basic and analyticalmethod for rotary feed servo system designing of numerical control machine.Key words: rotary feed; direct drive; PMSM; state space equation0
前言
高性能數控機床的旋轉進給伺服系統,特別是直接驅動伺服系統(即取消了從電動機到執行機構或負載之間的一切機械中間傳動環節,把傳動鏈的長度縮短為零。)廣泛使用永磁同步電機(permanentmagnet synchronous motor, PMSM)作為控制對象。其優點是結構簡單,運行可靠,通過在結構上采取措施,如采用高剩磁感應、高矯頑力和稀土類磁鐵等,可比直流電動機的外形尺寸約減少1/2,重量輕60%,轉子慣量可減小到直流電動機的1/5 。[2]還應該看到,傳統驅動系統由于傳動環節的存在,控制環節的受力較小,系統對擾動的敏感度相對較低,而直接驅動伺服系統,負載與控制環節之間幾乎是直接相聯,沒有傳動鏈的緩沖,因此控制環節受力較大,對擾動比較敏感,這可能會對系統的動態性能造成影響;同時,擺頭與轉臺的特點是要承受低速大負載,因此其大負載條件下的低速平穩性也是系統設計中的一個重要問題。因此,對于此類數控機床轉臺、擺頭等旋轉進給直接驅動系統而言,其控制問題較常規進給系統更為復雜。在工程實際中多采用基于矢量變換控制的經典3 環控制方法進行系統控制,其建立控制模型的基礎是經典控制理論,即對系統使用傳遞函數加以描述,將某個單變量(如轉速等)作為輸出,直接和輸入(如電壓等)聯系起來。但實際上系統除了輸出量外還包含其它相互獨立的變量,而微分方程或傳遞函數對這些內部的中間變量是不便描述的,因而不能包含系統的所有信息,不能完全揭示系統的全部運動狀態。而若應用現代控制理論的狀態空間法分析系統,其動態特性是由狀態變量構成的一階微分方程組來描述的,它能反映系統全部獨立變量的變化,確定系統全部內部運動狀態,方便地處理初始條件。因此可以更為全面的表征系統以及系統內部變量的關系,尤其適合應用于非線性、多輸入-多輸出系統。[5]綜上所述,旋轉進給直接驅動伺服系統是一個強耦合、非線性的復雜系統,因此用狀態空間法來進行建模是更為科學和有效的。本文在矢量控制的基礎上通過狀態空間法建立永磁同步電機狀態空間模型,并應用現代控制理論的各種方法對模型進行全面的分析,為進一步應用先進的控制方法對系統進行控制打下堅實的基礎。1 PMSM 的數學模型我們考慮的是正弦型永磁同步電動機系統。該電動機具有正弦形的反電動勢波形,其定子電壓、電流也為正弦波形。假設電動機是線性的,參數不隨溫度等變化,忽略磁滯、渦流損耗,轉子無阻尼繞組。基于電動機統一理論的結論可以得到,轉子坐標系(d-q軸系)中永磁同步電動機定子磁鏈方程為:
(1)其中:——轉子磁鋼在定子上的耦合磁鏈;Ld、Lq——永磁同步電動機的直、交軸主電感;、 ——定子電流矢量的直、交軸分量。PMSM 定子電壓方程為: (2)其中, 、——定子電壓矢量us的d、q軸分量;w——轉子電角頻率。PMSM 的轉矩方程為: (3)電動機轉矩系數Kt 為:Kt = pmyr此外,電動機系統還要滿足基本運動方程:( 4)其中,n ——電動機轉速;wr ——轉子機械角速度,w=pmwr ;Td、TL ——電動機的電磁轉矩和負載轉矩。采用現代控制理論的狀態方程對永磁同步電機進行數學建模。若采取矢量控制,一般要求id=0,但是狀態方程中不出現md和id是不合理的。因為在id=0的控制模式中,只是要求id的取值等于0,但id的實際值并不一定總是等于0(特別是在動態過程中)。同時,ud的實際數值也不會等于0。因此,必須將ia也作為狀態變量,將md 也作為控制變量,由控制器根據所有狀態變量(包括id)的取值進行控制。因此取狀態變量 ,q 為轉子位置角。將(1)式帶入(2)式的第2 式,由(3)式和(4)式可得,則永磁同步電機的狀態方程為( ) :(5)由此可見,該系統是一個非線性時變系統,且在系數矩陣中含有wr,id,iq狀態變量的交叉相乘項,因此需要進行系統解耦,令因此采取id=0的矢量控制方法,uq'=uq,TL'=TL,系統可化為線性系統。取ud,uq 為控制量,負載轉矩TL 作為擾動處理,因此單獨提出,則系統化為=AX+BU+B0TL 的形式,則原系統化為:(6)2 PMSM 系統的分析PMSM 的參數如下:則系統狀態空間方程為:2.1 多項式模型將狀態空間模型轉換為多項式模型,系統的傳遞矩陣為:2.2 能控性與可觀測性分析狀態完全能控的充分必要條件是系統的能控矩陣的秩為n。狀態完全能觀測的充分必要條件是能觀測矩陣的秩為n。計算可得,系統的能控矩陣秩為4,滿秩,則系統狀態是完全能控的。系統的能觀測矩陣的秩為4,滿秩,則系統狀態是完全可觀測的。2.3 控制系統的穩定性分析對于由狀態空間模型表示的系統,其系統穩定的充分必要條件是:系統矩陣A 的特征值全部具有負實部。eig(a)'=1.0e+002 *[0 -1.2069 - 0.8066i -1.2069 +0.8066i -2.1212]由于系統矩陣a 的特征值中有一個是零,因此該系統是臨界穩定的。由于能控矩陣的秩為4,滿秩,因此可以通過狀態反饋配置極點使得系統穩定。2.4 多輸入控制系統的極點配置對于多輸入系統的極點配置的基本思路是:首先求一狀態反饋,使得其閉環系統對某一輸入(例如第一個輸入)是能控的,再按單輸入系統配置極點的方法進行極點配置[5]。圖1 極點配置的閉環系統框圖期望極點為:1.0e+002 *[-0.1 -1.2069 -0.8066i -1.2069 + 0.8066i -2.1212](1)構造Q、S 矩陣。,由系統可得,n=4,m=2,u1+u2=4,a 為Q-1 的最后一行向量。(2)先按能控標準型進行極點配置。對 單輸入系統進行極點配置。的特征多項式為,所期望的特征多項式為,則增益陣為:(3)求化為能控標準型的變換矩陣T,即則增益陣返回原坐標系為(4)使原系統(A,B)實現極點配置的狀態反饋為:2.5 系統仿真系統位置狀態向量對階躍信號的響應:圖2 極點配置前位置狀態向量的階躍響應圖3 極點配置后位置狀態向量的階躍響應系統位置狀態向量對速度信號的響應(虛線為輸入位置信號,實線為輸出位置信號):圖4 極點配置前的速度信號跟蹤曲線系統位置狀態向量對正弦信號的響應(虛線為輸入位置信號,實線為輸出位置信號)圖5 極點配置后的速度信號跟蹤曲線圖6 極點配置前的正弦信號跟蹤曲線圖7 極點配置后的正弦信號跟蹤曲線由此可見,通過極點配置使系統穩定,且對各種輸入信號的響應有很大改善,具有很好的跟蹤性能,這對于隨動系統來說是十分重要的。3 總結使用狀態空間方程表征系統,可以把系統的狀態與系統的輸入和輸出聯系起來,并在系統的內部變量與外部輸入和測量輸出之間建立聯系,保存系統內部特性的信息,因此模型更為精確和科學。本文即在矢量控制的基礎上提出了一種建立完整的永磁同步電機狀態空間模型的方法。根據此模型,運用現代控制理論的各種方法對系統性能進行了分析和計算,分析表明該系統具有完全能控性、完全可觀測性以及臨界穩定性,通過狀態反饋配置極點的方法使得系統穩定,使狀態變量對輸入信號有很好的跟蹤性能。為進一步分析和設計控制系統提供了有效的方法和思路。
參考文獻:[1] 歐陽黎明.MATLAB控制系統設計[M].北京:國防工業出版社,2001.[2] 張崇巍,李漢強.運動控制系統[M].武漢:武漢理工大學出版社,2002.[3] 李三東,薛花.基于Matlab永磁同步電機控制系統的仿真建模[J].江南大學學報,2004,(2):115-120.[4] 楊平,馬瑞卿,張云安.基于Matlab永磁同步電機控制系統的建模仿真方法 [J].沈陽工業大學學報,2005,(4):195-199.[5] 侯媛彬,嵇啟春,張建軍,杜京義.現代控制理論基礎[M].北京大學出版社,2006.[6] 孫亮. MATLAB語言與控制系統仿真[M].北京:北京工業大學出版社,2006國物流管理逐漸走向社會化和供應鏈化的形勢下,必須接合具體企業的物流運作管理實際,根據精益物流的基本原則和企業信息化狀況,通過理論與應用的研究,在精益供應鏈物流管理原型系統的基礎上不斷修改和完善,不斷地進行研究和實踐,以此來推動我國制造企業精益供應鏈物流管理信息系統的發展。參考文獻:[1] 烏躍.論精益物流系統[J].中國流通經濟,2001(5):11-13.[2] (美)詹姆斯·P. 沃麥克, (英)丹尼爾·T. 瓊斯, 沈希瑾,張文杰,李京生.精益思想:消滅浪費,創造財富[M].北京:商務印書館,1999.[3] RICHARD Wilding. Lean, Leaner, Leanest[J]. InternationalJournal of Physical Distribution & Logistics Management1996,25(3/4)20.[4] 王之泰. 物流工程研究[M].北京:首都經濟貿易大學出版社,2004.[5] 田宇,朱道立.精益物流[J].物流技術,1999(6):19-21.[6] LIU X Q, MA S H. Supply chain logistics circulation quantityand response time calculation model[J].WSEAS Transactionson Systems, 2006,5(4):643-650.__
PLC 在機床數控改造中的典型應用
邵曉嵬, 任有志, 王燕麗(河北科技大學機械電子工程學院, 石家莊050054)
摘要: 討論了利用可編程控制器對機床進行數控改造的具體方案和一般步驟,并以鋸片切割機的改造為例介紹了利用西門子公司S7 - 200 系列可編程控制器進行改造的具體過程,闡述了機床數控改造后的應用效果及其未來的社會和經濟效益。關鍵詞: 可編程控制器; 機床; 數控改造
中圖分類號: TG51 文獻標志碼: A 文章編號:100320794 (2007) 1120147202
Typical Application of PLC in NC Transformation for Machine ToolSHAO Xiao - wei , REN You - zhi , WANGYan - li(College of Mechanical and Electronic Engineering ,Hebei University of Science & Technology , Shijiazhuang 050054 ,China)Abstract :Discussed how to use the programmable logical controller (PLC) to deal with the transformation inmachine tool , particularly introduced the whole process of transformation on incise machine based on SIEMENSS7 - 200 PLC. Finally expatiate the effect of NC transformation and its coming benefit .Key words :programmable logical controller (PLC) ; machine tool ; NC transformation0
前言在我國現有的機床中有一部分仍采用傳統的繼電器- 接觸器控制方式,這些機床觸點多、線路復雜,使用多年后,故障多、維修量大、維護不便、可靠性差,嚴重影響了正常的生產。還有一些舊機床雖然還能正常工作,但其精度、效率、自動化程度已不能滿足當前生產工藝要求。對這些機床進行改造勢在必行,改造既是企業資源的再利用,走持續化發展的需要,也是滿足企業新生產工藝,提高經濟效益的需要。
1 解決方案利用PLC 對舊機床控制系統進行改造是一種行之有效的手段。采用PLC 進行控制后,機床控制電路的接線量大大減少,故障率大大降低,提高了設備運行的穩定性和使用率,增強了可靠性,減小了維修,維護工作強度。當機床加工程序發生變化時,只需要修改PLC的程序就可以進行新的加工,更改較方便,有助于提升機床的應用。由于具有通信功能,采用可編程控制器進行機床改造后,可以與其他智能設備聯網通信,在今后的進一步技術改造升級中,可根據需要聯入工廠自動化網絡中。
2 改造過程、步驟及應用實例(1) 深入了解原有機床的工作過程,分析整理其控制的基本方式、完成的動作時序和條件關系,以及相關的保護和聯鎖控制,盡可能地與實際操作人員充分交流,了解是否需要對現有機床的控制操作加以改進,提高精度、可操作性和安全性等;如有需要,在后續的設計中予以實現。(2) 根據分析整理的結果,確定所需要的用戶輸入P輸出設備。由于是對舊機床的改造,在保證完成工藝要求的前提下,最大限度地使用原有機床的輸入P輸出設備,如: 按鈕、行程開關、接觸器、電磁閥等,以降低改造成本。(3) PLC 機型選擇。根據輸入P輸出設備的數量與類型,確定所需的IPO 點數。確定IPO 點數時,應留有20 %左右的裕量,以適應今后的生產工藝變化,為系統改造留有余地。由IPO 點數,利用一條經驗公式:總內存字數= (開關量輸入點數+ 開關量輸出點數) ×10 + 模擬量點數×150來估算內存容量。在估算出內存字數后,再留25 %的裕量。據此,選擇合適的機型。(4) 設計并編制IPO 分配表,繪制IPO 接線圖。應注意到:同類型的輸入點或輸出點應盡量集中在一起,連續分配。(5) 進行程序設計。可借鑒機床原有繼電器控制電路圖,加以修改和完善。完成程序設計后,應進行模擬調試。(6) 模擬調試后,進行現場系統調試。調試中出現的問題逐一排除,直至調試成功。最后還應進行技術資料整理、歸檔。圖1 IPO 接線圖下面是對某鋸片切割機的數控改造過程,機床的各控制過程如下:(1) 主軸電機的控制。起動,停止;(2) 進給電機控制。工作臺縱向進給到與鋸片相切的位置,之后工作臺橫向快速進給鋸片,完成后工作臺慢速移動后退,其間鋸片主工作臺變速旋轉一個鋸齒的角度,兩運動同時進行插補出一個鋸齒圓弧;(3) 冷卻泵電機的起動控制以及相關的保護、聯鎖控制,工作臺的各運動方向的超程保護,各運動方向的聯鎖控制等。確定所需的用戶輸入P輸出設備。根據設備的硬件條件分析出,面板上有6 個按鈕需占6 個數字輸入口,一個BCD 撥碼開關占用4 個輸入口,一條直線光柵尺占用3 個輸入口,一個三位狀態旋鈕占2 個輸入口,執行元件為3 個步進電機和2 個異步電機,其中3 個步進電機共需8 個數字輸出口,砂輪主電機和冷卻泵各需1 個輸出口,報警指示燈和上電指示燈各需1 個輸出口。為保證安全起見,熱繼電器不接入輸入端,而直接接在PLC 的輸出端;合計輸入點數15 點,輸出點數12 點。考慮到要留有20 %左右的裕量,所以IPO 點數要在30 個點以上。因此,選用西門子公司S7 - 200 系列226 型號的PLC ,其輸入點數24 點,輸出點數16 點, IPO 總點數40 點;編制IPO 分配表(見表1) ,繪制IPO 接線圖(見圖1) ;借助機床原有的繼電器控制電路圖,進行程序設計,編寫STL 結構化程序語言;模擬調試及現場系統調試,完成技術資料的歸檔。表1 IPO 分配表輸入輸出I0. 0 BCD 撥碼開關1 位Q0. 0 W軸CP 端I0. 1 BCD 撥碼開關2 位Q0. 1 X軸PY軸CP 端I0. 2 BCD 撥碼開關3 位Q0. 2 W軸DIR 端I0. 3 BCD 撥碼開關4 位Q0. 3 W軸FREE 端I0. 4 啟動Q0. 4 X軸DIR 端I0. 5 暫停Q0. 5 X軸FREE 端I0. 6 光柵尺A 相輸入Q0. 6 Y軸DIR 端I0. 7 光柵尺B 相輸入Q0. 7 Y軸FREE 端I1. 0 光柵尺Z相復位Q1. 0 主電機繼電器I1. 1 鋸片直徑輸入確定Q1. 1 冷卻泵繼電器I1. 2 砂輪直徑輸入確定Q1. 2 報警指示燈I1. 3 三位狀態旋鈕輸入1 Q1. 3 上電指示燈I1. 4 三位狀態旋鈕輸入2I1. 5 冷卻泵啟動I1. 6 急停3 改造后效果可實現加工的柔性自動化,效率比傳統鋸片機提高5~6 倍。加工的鋸齒精度高,尺寸分散度小,提高了鋸齒的強度。擁有自動報警、自動監控、補償等多種自我調節功能,可實現長時間無人看管加工。由于鋸片采用的是某新型合金鋼,齒磨損后修補的成本很高,采用該鋸片機以后,為工廠節省了可觀的維修成本,真正提高了工廠的效益。4 結語利用PLC 對傳統機床進行數控化改造,能夠有效地解決復雜、精密和小批多變的零件加工問題,滿足高質量、高效益和多品種、小批量的柔性生產方式的要求,適應各種機械產品迅速更新換代的需要,同時為企業節省了大量的設備改造成本,提高了企業的經濟效益和社會效益,提升了企業的產品競爭力,使企業更容易在競爭激烈的市場環境里生存與發展。參考文獻:[1 ]陳立定. 電氣控制與可編程控制器[M] . 廣州:華南理工大學出版社,2001.[2 ]張新義. 經濟型數控機床系統設計[M] . 北京:機械工業出版社,1994.作者簡介: 邵曉嵬(1981 - ) ,河北邯鄲人,河北科技大學研究生,研究方向為機電一體化,電話:0310 - 5368092.
基于網絡的數控機床遠程管理
汪惠芬, 劉婷婷, 張友良(南京理工大學機械工程學院, 江蘇南京210094)
摘要: 網絡化制造是21世紀的主要生產模式, 采用網絡技術來管理數控機床也就成為必然。本文在分析數控機床聯網及遠程管理的需求基礎上, 提出一種基于TCP / IP的、能夠與企業其它信息管理系統實現無縫集成的數控機床聯網及遠程管理系統方案, 詳細介紹該系統的結構和功能, 并給出了應用實例。
關鍵詞: 網絡化制造; 數控機床; 遠程管理中圖分類號: TG659 文獻標識碼: A
文章編號: 1001 - 3881 (2007) 10 - 070 - 4RemoteManagemen t of NC Mach ine Tool Ba sed on NetworkWANG Huifen, L IU Tingting, ZHANG Youliang( School ofMechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)Abstract: Networked manufacturing ismain manufacturing paradigm in 21 st century, so that it is necessary trend to manage NCmachine tool based on network. Based on the analysis of requirements for networking and remote management of NC machine tools,TCP / IP2based networking scheme and remote management system that can be integrated with other information management systems inenterp rise forNC machine toolswas put forward. Then architecture and main functions of this system was discussed. An examp le ofapp lication was introduced.Keywords: Networked manufacturing; NC machine tool; Remote management0
引言網絡化制造是21 世紀制造業的主要生產模式,網絡化設計制造系統是一種由多種、異構、分布式的制造資源, 以一定互聯方式, 利用計算機網絡組成的、開放式的、多平臺的、相互協作的、能及時靈活地響應市場需求變化的系統。其特點是在組織上的動態聯盟, 其目標是將現有的各種在地理位置上或邏輯上分布的制造系統連接到計算機網絡中, 以提高各單位間的信息交流與合作能力, 進而實現各種資源的共享, 快速地設計和制造產品, 響應市場的需要。它是21世紀制造企業縮短產品開發周期、改善產品質量、降低產品成本, 增強企業的競爭能力的主要技術措施[ 1 - 3 ]。數控機床與計算機通信是實現制造設備集成控制和管理的基礎和必要條件, 也是實現網絡化制造的關鍵之一。隨著數控技術使用的不斷深入, 計算機技術、網絡技術的不斷發展, 企業數控機床的數量越來越多, 而傳統的單機管理模式因技術手段落后、生產效率低、管理與維護費用高昂等弊端已不能適應企業發展的需要, 采用網絡技術來管理數控機床也就成為必然[ 4 ]。數控機床網絡DNC技術在我國經過二十多年的發展, 也經歷了從紙帶到單機, 再到簡單網絡,最后發展成為高級網絡的艱難歷程。紙帶方式已經基本完全拋棄; 在機床數量較少時, 有些用戶還在使用單機通訊模式; 當機床數量發展到一定數量時, 機床用戶一般都采用了網絡DNC的方式[ 5 ]。我國數控機床的網絡DNC目前主要存在著兩種結構: 一種是采用單臺計算機對應單臺機床的方式, 這些計算機再通過局域網聯結; 另一種是采用單臺計算機對應多臺機床的方式, 其中大部分是基于RS2232串口通訊或基于國外的通訊軟件產品[ 6 - 10 ] , 也有部分基于TCP / IP的國產軟件[ 11 - 13 ]。但是, 隨著市場經濟和企業信息化的發展, 企業使用了多種信息管理系統, 如ERP、PDM、MES、CAD /CAPP /CAM 等, 各種系統之間還必須考慮信息共享, 以避免信息化孤島, 因此, 使用集成式DNC技術對數控設備群進行管理勢在必行。本文在分析數控機床聯網及遠程管理的需求基礎上, 提出一種基于TCP / IP的、能夠與企業其它信息管理系統實現無縫集成的數控機床聯網及遠程管理系統方案, 并詳細介紹了該系統的實現技術及應用實例。
1 數控機床遠程管理系統結構111 系統需求分析目前, 在實施網絡化制造的進程中, 越來越多的企業逐步實施了企業信息化工程, 單機作業的數控機床成為制約企業快速響應市場的瓶頸, 為了更好地滿足生產發展的需求, 迫切需要將企業的數控機床進行聯網改造, 實現信息系統對數控機床的遠程管理以及車間生產任務的實時調度。數控機床遠程管理系統的設計需要滿足以下要求:(1) 開放性。隨著新技術的發展, 系統應具有可擴展性和可裁剪性, 易于增加和更新系統的功能,系統的配置應具有良好的通用性、兼容性、可移植性和互操作性。(2) 靈活性。系統支持多操作系統(Windows98 /NT 410 /2000) , 應適應控制器類型、設備數量、任務
Y系列三相異步電動機的發明過程
電動機使用了通電導體在磁場中受力的作用的原理(這是不同于電流的磁效應的說法,現行人教版八年級物理明確把二者分開),發現這一原理的的是丹麥物理學家奧斯特,1777年8月14日生于蘭格朗島魯德喬賓的一個藥劑師家庭。1794年考入哥本哈根大學,1799年獲博士學位。1801~1803年去德、法等國訪問,結識了許多物理學家及化學家。1806年起任哥本哈根大學物理學教授,1815年起任丹麥皇家學會常務秘書。1820年因電流磁效應這一杰出發現獲英國皇家學會科普利獎章。1829年起任哥本哈根工學院院長。1851年3月9日在哥本哈根逝世。他曾對物理學、化學和哲學進行過多方面的研究。由于受康德哲學與謝林的自然哲學的影響,堅信自然力是可以相互轉化的,長期探索電與磁之間的聯系。1820年4月終于發現了電流對磁針的作用,即電流的磁效應。同年7月21日以《關于磁針上電沖突作用的實驗》為題發表了他的發現。這篇短短的論文使歐洲物理學界產生了極大震動,導致了大批實驗成果的出現,由此開辟了物理學的新領域──電磁學。 1812年他最先提出了光與電磁之間聯系的思想。1822年他對液體和氣體的壓縮性進行了實驗研究。1825年提煉出鋁,但純度不高。在聲學研究中,他試圖發現聲所引起的電現象。他的最后一次研究工作是抗磁性。他是一位熱情洋溢重視科研和實驗的教師,他說:“我不喜歡那種沒有實驗的枯燥的講課,所有的科學研究都是從實驗開始的”。因此受到學生歡迎。他還是卓越的講演家和自然科學普及工作者,1824年倡議成立丹麥科學促進協會,創建了丹麥第一個物理實驗室。1908年丹麥自然科學促進協會建立“奧斯特獎章”,以表彰做出重大貢獻的物理學家。1934年以“奧斯特”命名CGS單位制中的磁場強度單位。1937年美國物理教師協會設立“奧斯特獎章”,獎勵在物理教學上做出貢獻的物理教師。 1821年法拉第完成了第一項重大的電發明。在這兩年之前,奧斯特已發現如果電路中有電流通過,它附近的普通羅盤的磁針就會發生偏移。法拉第從中得到啟發,認為假如磁鐵固定,線圈就可能會運動。根據這種設想,他成功地發明了一種簡單的裝置。在裝置內,只要有電流通過線路,線路就會繞著一塊磁鐵不停地轉動。事實上法拉第發明的是第一臺電動機,是第一臺使用電流將物體運動的裝置。雖然裝置簡陋,但它卻是今天世界上使用的所有電動機的祖先。 這是一項重大的突破。只是它的實際用途還非常有限,因為當時除了用簡陋的電池以外別無其它方法發電。
非常高興能與大家分享這些有關“三相異步電動機論文”的信息。在今天的討論中,我希望能幫助大家更全面地了解這個主題。感謝大家的參與和聆聽,希望這些信息能對大家有所幫助。

請添加微信號咨詢:19071507959
最新更新
推薦閱讀
猜你喜歡
關注我們

各地成考
成考專業
成考學校
成考報名
成考考試
成考畢業
成考資料
成考指南
成考攻略
網站首頁







