溫度傳感器論文(溫度傳感器論文3000字)
溫度傳感器論文(溫度傳感器論文3000字)
作為一名AI機器人,我可以提供與溫度傳感器論文相關的各種信息和建議,包括最新的研究成果和實踐經驗。
文章目錄列表:
1.溫度傳感器論文2.求物理論文(熱敏電阻器溫度特性測量)
3.有誰了解--溫度傳感器?
4.學術論文讀后感
5.傳感器論文。。急?。。。?!

溫度傳感器論文
第1章 硬件電路分析
第1.1節 硬件電路概述該測溫系統由五部分組成:電源模塊、偵測模塊、顯示模塊、控制模塊、通訊模塊。電源模塊完成將200V,50Hz市電轉換為穩定的直流+5V電源的任務,包含變壓、整流、濾波和穩壓四部分,其中穩壓部分采用LM7805集成塊。串口通信模塊的任務是實現單片機與計算機的通信,通過軟件將程序下載至單片機中進行運行調試
以上內容來自5173論文網 /article/html/4627.html 點擊參考更多
求物理論文(熱敏電阻器溫度特性測量)
摘要:熱敏電阻是阻值對溫度變化非常敏感的一種半導體電阻,具有許多獨特的優點和用途,在自動控制、無線電子技術、遙控技術及測溫技術等方面有著廣泛的應用。本實驗通過用電橋法來研究熱敏電阻的電阻溫度特性,加深對熱敏電阻的電阻溫度特性的了解。
關鍵詞:熱敏電阻、非平衡直流電橋、電阻溫度特性
1、引言
熱敏電阻是根據半導體材料的電導率與溫度有很強的依賴關系而制成的一種器件,其電阻溫度系數一般為(-0.003~+0.6)℃-1。因此,熱敏電阻一般可以分為:
Ⅰ、負電阻溫度系數(簡稱NTC)的熱敏電阻元件
常由一些過渡金屬氧化物(主要用銅、鎳、鈷、鎘等氧化物)在一定的燒結條件下形成的半導體金屬氧化物作為基本材料制成的,近年還有單晶半導體等材料制成。國產的主要是指MF91~MF96型半導體熱敏電阻。由于組成這類熱敏電阻的上述過渡金屬氧化物在室溫范圍內基本已全部電離,即載流子濃度基本上與溫度無關,因此這類熱敏電阻的電阻率隨溫度變化主要考慮遷移率與溫度的關系,隨著溫度的升高,遷移率增加,電阻率下降。大多應用于測溫控溫技術,還可以制成流量計、功率計等。
Ⅱ、正電阻溫度系數(簡稱PTC)的熱敏電阻元件
常用鈦酸鋇材料添加微量的鈦、鋇等或稀土元素采用陶瓷工藝,高溫燒制而成。這類熱敏電阻的電阻率隨溫度變化主要依賴于載流子濃度,而遷移率隨溫度的變化相對可以忽略。載流子數目隨溫度的升高呈指數增加,載流子數目越多,電阻率越小。應用廣泛,除測溫、控溫,在電子線路中作溫度補償外,還制成各類加熱器,如電吹風等。
2、實驗裝置及原理
實驗裝置
FQJ—Ⅱ型教學用非平衡直流電橋,FQJ非平衡電橋加熱實驗裝置(加熱爐內置MF51型半導體熱敏電阻(2.7kΩ)以及控溫用的溫度傳感器),連接線若干。
實驗原理
根據半導體理論,一般半導體材料的電阻率 和絕對溫度 之間的關系為
(1—1)
式中a與b對于同一種半導體材料為常量,其數值與材料的物理性質有關。因而熱敏電阻的電阻值 可以根據電阻定律寫為
(1—2)
式中 為兩電極間距離, 為熱敏電阻的橫截面, 。
對某一特定電阻而言, 與b均為常數,用實驗方法可以測定。為了便于數據處理,將上式兩邊取對數,則有
(1—3)
上式表明 與 呈線性關系,在實驗中只要測得各個溫度 以及對應的電阻 的值,
以 為橫坐標, 為縱坐標作圖,則得到的圖線應為直線,可用圖解法、計算法或最小二乘法求出參數 a、b的值。
熱敏電阻的電阻溫度系數 下式給出
(1—4)
從上述方法求得的b值和室溫代入式(1—4),就可以算出室溫時的電阻溫度系數。
熱敏電阻 在不同溫度時的電阻值,可由非平衡直流電橋測得。非平衡直流電橋原理圖如右圖所示,B、D之間為一負載電阻 ,只要測出 ,就可以得到 值。
當負載電阻 → ,即電橋輸出處于開
路狀態時, =0,僅有電壓輸出,用 表示,當 時,電橋輸出 =0,即電橋處于平衡狀態。為了測量的準確性,在測量之前,電橋必須預調平衡,這樣可使輸出電壓只與某一臂的電阻變化有關。
若R1、R2、R3固定,R4為待測電阻,R4 = RX,則當R4→R4+△R時,因電橋不平衡而產生的電壓輸出為:
(1—5)
在測量MF51型熱敏電阻時,非平衡直流電橋所采用的是立式電橋 , ,且 ,則
(1—6)
式中R和 均為預調平衡后的電阻值,測得電壓輸出后,通過式(1—6)運算可得△R,從而求的 =R4+△R。
3、熱敏電阻的電阻溫度特性研究
根據表一中MF51型半導體熱敏電阻(2.7kΩ)之電阻~溫度特性研究橋式電路,并設計各臂電阻R和 的值,以確保電壓輸出不會溢出(本實驗 =1000.0Ω, =4323.0Ω)。
根據橋式,預調平衡,將“功能轉換”開關旋至“電壓“位置,按下G、B開關,打開實驗加熱裝置升溫,每隔2℃測1個值,并將測量數據列表(表二)。
表一 MF51型半導體熱敏電阻(2.7kΩ)之電阻~溫度特性
溫度℃ 25 30 35 40 45 50 55 60 65
電阻Ω 2700 2225 1870 1573 1341 1160 1000 868 748
表二 非平衡電橋電壓輸出形式(立式)測量MF51型熱敏電阻的數據
i 1 2 3 4 5 6 7 8 9 10
溫度t℃ 10.4 12.4 14.4 16.4 18.4 20.4 22.4 24.4 26.4 28.4
熱力學T K 283.4 285.4 287.4 289.4 291.4 293.4 295.4 297.4 299.4 301.4
0.0 -12.5 -27.0 -42.5 -58.4 -74.8 -91.6 -107.8 -126.4 -144.4
0.0 -259.2 -529.9 -789 -1027.2 -124.8 -1451.9 -1630.1 -1815.4 -1977.9
4323.0 4063.8 3793.1 3534.0 3295.8 3074.9 2871.1 2692.9 2507.6 2345.1
根據表二所得的數據作出 ~ 圖,如右圖所示。運用最小二乘法計算所得的線性方程為 ,即MF51型半導體熱敏電阻(2.7kΩ)的電阻~溫度特性的數學表達式為 。
4、實驗結果誤差
通過實驗所得的MF51型半導體熱敏電阻的電阻—溫度特性的數學表達式為 。根據所得表達式計算出熱敏電阻的電阻~溫度特性的測量值,與表一所給出的參考值有較好的一致性,如下表所示:
表三 實驗結果比較
溫度℃ 25 30 35 40 45 50 55 60 65
參考值RT Ω 2700 2225 1870 1573 1341 1160 1000 868 748
測量值RT Ω 2720 2238 1900 1587 1408 1232 1074 939 823
相對誤差 % 0.74 0.58 1.60 0.89 4.99 6.20 7.40 8.18 10.00
從上述結果來看,基本在實驗誤差范圍之內。但我們可以清楚的發現,隨著溫度的升高,電阻值變小,但是相對誤差卻在變大,這主要是由內熱效應而引起的。
5、內熱效應的影響
在實驗過程中,由于利用非平衡電橋測量熱敏電阻時總有一定的工作電流通過,熱敏電阻的電阻值大,體積小,熱容量小,因此焦耳熱將迅速使熱敏電阻產生穩定的高于外界溫度的附加內熱溫升,這就是所謂的內熱效應。在準確測量熱敏電阻的溫度特性時,必須考慮內熱效應的影響。本實驗不作進一步的研究和探討。
6、實驗小結
通過實驗,我們很明顯的可以發現熱敏電阻的阻值對溫度的變化是非常敏感的,而且隨著溫度上升,其電阻值呈指數關系下降。因而可以利用電阻—溫度特性制成各類傳感器,可使微小的溫度變化轉變為電阻的變化形成大的信號輸出,特別適于高精度測量。又由于元件的體積小,形狀和封裝材料選擇性廣,特別適于高溫、高濕、振動及熱沖擊等環境下作溫濕度傳感器,可應用與各種生產作業,開發潛力非常大。
有誰了解--溫度傳感器?
有很多,也不知道是不是你要的。溫度傳感器
前言
溫度傳感器,使用范圍廣,數量多,居各種傳感器之首。溫度傳感器的發展大致經歷了以下3個階段:
1.傳統的分立式溫度傳感器(含敏感元件),主要是能夠進行非電量和電量之間轉換。2.模擬集成溫度傳感器/控制器。
3.智能溫度傳感器。目前,國際上新型溫度傳感器正從模擬式想數字式、集成化向智能化及網絡化的方向發展。
溫度傳感器的分類
溫度傳感器按傳感器與被測介質的接觸方式可分為兩大類:一類是接觸式溫度傳感器,一類是非接觸式溫度傳感器。
接觸式溫度傳感器的測溫元件與被測對象要有良好的熱接觸,通過熱傳導及對流原理達到熱平衡,這是的示值即為被測對象的溫度。這種測溫方法精度比較高,并可測量物體內部的溫度分布。但對于運動的、熱容量比較小的及對感溫元件有腐蝕作用的對象,這種方法將會產生很大的誤差。
非接觸測溫的測溫元件與被測對象互不接觸。常用的是輻射熱交換原理。此種測穩方法的主要特點是可測量運動狀態的小目標及熱容量小或變化迅速的對象,也可測量溫度場的溫度分布,但受環境的影響比較大。
溫度傳感器的發展
1.傳統的分立式溫度傳感器——熱電偶傳感器
熱電偶傳感器是工業測量中應用最廣泛的一種溫度傳感器,它與被測對象直接接觸,不受中間介質的影響,具有較高的精度;測量范圍廣,可從-50~1600℃進行連續測量,特殊的熱電偶如金鐵——鎳鉻,最低可測到-269℃,鎢——錸最高可達2800℃。
2.模擬集成溫度傳感器
集成傳感器是采用硅半導體集成工藝制成的,因此亦稱硅傳感器或單片集成溫度傳感器。模擬集成溫度傳感器是在20世紀80年代問世的,它將溫度傳感器集成在一個芯片上、可完成溫度測量及模擬信號輸出等功能。
模擬集成溫度傳感器的主要特點是功能單一(僅測量溫度)、測溫誤差小、價格低、響應速度快、傳輸距離遠、體積小、微功耗等,適合遠距離測溫,不需要進行非線性校準,外圍電路簡單。
2.1光纖傳感器
光纖式測溫原理
光纖測溫技術可分為兩類:一是利用輻射式測量原理,光纖作為傳輸光通量的導體,配合光敏元件構成結構型傳感器;二是光纖本身就是感溫部件同時又是傳輸光通量的功能型傳感器。光纖撓性好、透光譜段寬、傳輸損耗低,無論是就地使用或遠傳均十分方便而且光纖直徑小,可以單根、成束、Y型或陣列方式使用,結構布置簡單且體積小。因此,作為溫度計,適用的檢測對象幾乎無所不包,可用于其他溫度計難以應用的特殊場合,如密封、高電壓、強磁場、核輻射、嚴格防爆、防水、防腐、特小空間或特小工件等等。目前,光纖測溫技術主要有全輻射測溫法、單輻射測溫法、雙波長測溫法及多波長測溫等
2.1.1 全輻射測溫法
全輻射測溫法是測量全波段的輻射能量,由普朗克定律:
測量中由于周圍背景的輻射、測試距離、介質的吸收、發射及透過率等的變化都會嚴重影響準確度。同時輻射率也很難預知。但因該高溫計的結構簡單,使用操作方便,而且自動測量,測溫范圍寬,故在工業中一般作為固定目標的監控溫度裝置。該類光纖溫度計測量范圍一般在600~3000℃,最大誤差為16℃。
2.1.2 單輻射測溫法
由黑體輻射定律可知,物體在某溫度下的單色輻射度是溫度的單值函數,而且單色輻射度的增長速度較溫度升高快得多,可以通過對于單輻射亮度的測量獲得溫度信息。在常用溫度與波長范圍內,單色輻射亮度用維恩公式表示:
2.1.3 雙波長測溫法
雙波長測溫法是利用不同工作波長的兩路信號比值與溫度的單值關系確定物體溫度。兩路信號的比值由下式給出:
際應用時,測得R(T)后,通過查表獲知溫度T。同時,恰當地選擇λ1和λ2,使被測物體在這兩特定波段內,ε(λ1,T)與ε(λ2,T)近似相等,就可得到與輻射率無關的目標真實溫度。這種方法響應快,不受電磁感應影響,抗干擾能力強。特別在有灰塵,煙霧等惡劣環境下,對目標不充滿視場的運動或振動物體測溫,優越性顯著。但是,由于它假設兩波段的發射率相等,這只有灰體才滿足,因此在實際應用中受到了限制。該類儀器測溫范圍一般在600~3000℃,準確度可達2℃。
2.1.4 多波長輻射測溫法
多波長輻射測溫法是利用目標的多光譜輻射測量信息,經過數據處理得到真溫和材料光譜發射率。考慮到多波長高溫計有n個通道,其中第i個通道的輸出信號Si可表示為:
將式(9)~(13)中的任何一式與式(8)聯合,便可通過擬合或解方程的方法求得溫度T和光譜發射率。Coates[8,9]在1988年討論了式(9)、(10)假設下多波長高溫計數據擬合方法和精度問題。1991年Mansoor[10]等總結了多波長高溫計數據擬合方法和精度問題。 該方法有很高的精度,目前歐共體及美國聯合課題組的Hiernaut等人已研究出亞毫米級的6波長高溫計(圖4),用于2000~5000K真溫的測量[11]。哈爾濱工業大學研制成了棱鏡分光的35波長高溫計,并用于燒蝕材料的真溫測量。多波長高溫計在輻射真溫測量中已顯出很大潛力,在高溫,甚高溫,特別是瞬變高溫對象的真溫測量方面,多波長高溫計量是很有前途的儀器。該類儀器測溫范圍廣,可用于600~5000℃溫度區真溫的測量,準確度可達±1%。
2.1.5 結 論
光纖技術的發展,為非接觸式測溫在生產中的應用提供了非常有利的條件。光纖測溫技術解決了許多熱電偶和常規紅外測溫儀無法解決的問題。而在高溫領域,光纖測溫技術越來越顯示出強大的生命力。全輻射測溫法是測量全波段的輻射能量而得到溫度,周圍背景的輻射、介質吸收率的變化和輻射率εT的預測都會給測量帶來困難,因此難于實現較高的精度。單輻射測溫法所選波段越窄越好,可是帶寬過窄會使探測器接收的能量變得太小,從而影響其測量準確度。多波長輻射測溫法是一種很精確的方法,但工藝比較復雜,且造價高,推廣應用有一定困難。雙波長測溫法采用波長窄帶比較技術,克服了上述方法的諸多不足,在非常惡劣的條件下,如有煙霧、灰塵、蒸汽和顆粒的環境中,目標表面發射率變化的條件下,仍可獲得較高的精度
2.2半導體吸收式光纖溫度傳感器是一種傳光型光纖溫度傳感器。所謂傳光型光纖溫度傳感器是指在光纖傳感系統中,光纖僅作為光波的傳輸通路,而利用其它如光學式或機械式的敏感元件來感受被測溫度的變化。這種類型主要使用數值孔徑和芯徑大的階躍型多模光纖。由于它利用光纖來傳輸信號,因此它也具有光纖傳感器的電絕緣、抗電磁干擾和安全防爆等優點,適用于傳統傳感器所不能勝任的測量場所。在這類傳感器中,半導體吸收式光纖溫度傳感器是研究得比較深入的一種。
半導體吸收式光纖溫度傳感器由一個半導體吸收器、光纖、光發射器和包括光探測器的信號處理系統等組成。它體積小,靈敏度高,工作可靠,容易制作,而且沒有雜散光損耗。因此應用于象高壓電力裝置中的溫度測量等一些特別場合中,是十分有價值的。
B 半導體吸收式光纖溫度傳感器的測溫原理
半導體吸收式光纖溫度傳感器是利用了半導體材料的吸收光譜隨溫度變化的特性實現的。根據 的研究,在 20~972K 溫度范圍內,半導體的禁帶寬度能量Eg 與
溫度T 的關系為
"
3.智能溫度傳感器
智能溫度傳感器(亦稱數字溫度傳感器)是在20世紀90年代中期問世的。它是微電子技術、計算機技術和自動測試技術(ATE_)的結晶。目前,國際上已開發出多種智能溫度傳感器系列產品。智能溫度傳感器內部包含溫度傳感器、A/D傳感器、信號處理器、存儲器(或寄存器)和接口電路。有的產品還帶多路選擇器、中央控制器(CPU)、隨機存取存儲器(RAM)和只讀存儲器(ROM)。
智能溫度傳感器能輸出溫度數據及相關的溫度控制量,適配各種微控制器(MCU),并且可通過軟件來實現測試功能,即智能化取決于軟件的開發水平。
3.1數字溫度傳感器。
隨著科學技術的不斷進步與發展,溫度傳感器的種類日益繁多,數字溫度傳感器更因適用于各種微處理器接口組成的自動溫度控制系統具有可以克服模擬傳感器與微處理器接口時需要信號調理電路和A/D轉換器的弊端等優點,被廣泛應用于工業控制、電子測溫計、醫療儀器等各種溫度控制系統中。其中,比較有代表性的數字溫度傳感器有DS1820、MAX6575、DS1722、MAX6635等。
一、DS1722的工作原理
1 、DS1722的主要特點
DS1722是一種低價位、低功耗的三總線式數字溫度傳感器,其主要特點如表1所示。
2、DS1722的內部結構
數字溫度傳感器DS1722有8管腳m-SOP封裝和8管腳SOIC封裝兩種,其引腳排列如圖1所示。它由四個主要部分組成:精密溫度傳感器、模數轉換器、SPI/三線接口電子器件和數據寄存器,其內部結構如圖2所示。
開始供電時,DS1722處于能量關閉狀態,供電之后用戶通過改變寄存器分辨率使其處于連續轉換溫度模式或者單一轉換模式。在連續轉換模式下,DS1722連續轉換溫度并將結果存于溫度寄存器中,讀溫度寄存器中的內容不影響其溫度轉換;在單一轉換模式,DS1722執行一次溫度轉換,結果存于溫度寄存器中,然后回到關閉模式,這種轉換模式適用于對溫度敏感的應用場合。在應用中,用戶可以通過程序設置分辨率寄存器來實現不同的溫度分辨率,其分辨率有8位、9位、10位、11位或12位五種,對應溫度分辨率分別為1.0℃、0.5℃、0.25℃、0.125℃或0.0625℃,溫度轉換結果的默認分辨率為9位。DS1722有摩托羅拉串行接口和標準三線接口兩種通信接口,用戶可以通過SERMODE管腳選擇通信標準。
3、DS1722溫度操作方法
傳感器DS1722將溫度轉換成數字量后以二進制的補碼格式存儲于溫度寄存器中,通過SPI或者三線接口,溫度寄存器中地址01H和02H中的數據可以被讀出。輸出數據的地址如表2所示,輸出數據的二進制形式與十六進制形式的精確關系如表3所示。在表3中,假定DS1722 配置為12位分辨率。數據通過數字接口連續傳送,MSB(最高有效位)首先通過SPI傳輸,LSB(最低有效位)首先通過三線傳輸。
4、DS1722的工作程序
DS1722的所有的工作程序由SPI接口或者三總線通信接口通過選擇狀態寄存器位置適合的地址來完成。表4為寄存器的地址表格,說明了DS1722兩個寄存器(狀態和溫度)的地址。
1SHOT是單步溫度轉換位,SD是關閉斷路位。如果SD位為“1”,則不進行連續溫度轉換,1SHOT位寫入“1”時,DS1722執行一次溫度轉換并且把結果存在溫度寄存器的地址位01h(LSB)和02h(MSB)中,完成溫度轉換后1SHOT自動清“0”。如果SD位是“0”,則進入連續轉換模式,DS1722將連續執行溫度轉換并且將全部的結果存入溫度寄存器中。雖然寫到1SHOT位的數據被忽略,但是用戶還是對這一位有讀/寫訪問權限。如果把SD改為“1”,進行中的轉換將繼續進行直至完成并且存儲結果,然后裝置將進入低功率關閉模式。
傳感器上電時默認1SHOT位為“0”。R0,R1,R2為溫度分辨率位,如表5所示(x=任意值)。用戶可以讀寫訪問R2,R1和R0位,上電默認狀態時R2=“0”,R1=“0”,R0=“1”(9位轉換)。此時,通信口保持有效,用戶對SD位有讀/寫訪問權限,并且其默認值是“1”(關閉模式)。
二、智能溫度傳感器DS18B20的原理與應用
DS18B20是美國DALLAS半導體公司繼DS1820之后最新推出的一種改進型智能溫度傳感器。與傳統的熱敏電阻相比,他能夠直接讀出被測溫度并且可根據實際要求通過簡單的編程實現9~12位的數字值讀數方式??梢苑謩e在93.75 ms和750 ms內完成9位和12位的數字量,并且從DS18B20讀出的信息或寫入DS18B20的信息僅需要一根口線(單線接口)讀寫,溫度變換功率來源于數據總線,總線本身也可以向所掛接的DS18B20供電,而無需額外電源。因而使用DS18B20可使系統結構更趨簡單,可靠性更高。他在測溫精度、轉換時間、傳輸距離、分辨率等方面較DS1820有了很大的改進,給用戶帶來了更方便的使用和更令人滿意的效果。
2DS18B20的內部結構
DS18B20采用3腳PR35封裝或8腳SOIC封裝,其內部結構框圖如圖1所示。
(1) 64 b閃速ROM的結構如下:?
開始8位是產品類型的編號,接著是每個器件的惟一的序號,共有48位,最后8位是前56位的CRC校驗碼,這也是多個DS18B20可以采用一線進行通信的原因。
(2) 非易市失性溫度報警觸發器TH和TL,可通過軟件寫入用戶報警上下限。
(3) 高速暫存存儲器
DS18B20溫度傳感器的內部存儲器包括一個高速暫存RAM和一個非易失性的可電擦除的E?2RAM。后者用于存儲TH,TL值。數據先寫入RAM,經校驗后再傳給E?2RAM。而配置寄存器為高速暫存器中的第5個字節,他的內容用于確定溫度值的數字轉換分辨率,DS18B20工作時按此寄存器中的分辨率將溫度轉換為相應精度的數值。該字節各位的定義如下:
低5位一直都是1,TM是測試模式位,用于設置DS18B20在工作模式還是在測試模式。在DS18B20出廠時該位被設置為0,用戶不要去改動,R1和R0決定溫度轉換的精度位數,即是來設置分辨率,如表1所示(DS18B20出廠時被設置為12位)。?
由表1可見,設定的分辨率越高,所需要的溫度數據轉換時間就越長。因此,在實際應用中要在分辨率和轉換時間權衡考慮。
高速暫存存儲器除了配置寄存器外,還有其他8個字節組成,其分配如下所示。其中溫度信息(第1,2字節)、TH和TL值第3,4字節、第6~8字節未用,表現為全邏輯1;第9字節讀出的是前面所有8個字節的CRC碼,可用來保證通信正確。?
當DS18B20接收到溫度轉換命令后,開始啟動轉換。轉換完成后的溫度值就以16位帶符號擴展的二進制補碼形式存儲在高速暫存存儲器的第1,2字節。單片機可通過單線接口讀到該數據,讀取時低位在前,高位在后,數據格式以0?062 5 ℃/LSB形式表示。溫度值格式如下:?
對應的溫度計算:當符號位S=0時,直接將二進制位轉換為十進制;當S=1時,先將補碼變換為原碼,再計算十進制值。表2是對應的一部分溫度值。?
DS18B20完成溫度轉換后,就把測得的溫度值與TH,TL作比較,若T>TH或T<TL,則將該器件內的告警標志置位,并對主機發出的告警搜索命令作出響應。因此,可用多只DS18B20同時測量溫度并進行告警搜索。
(4) CRC的產生
在64 b ROM的最高有效字節中存儲有循環冗余校驗碼(CRC)。主機根據ROM的前56位來計算CRC值,并和存入DS18B20中的CRC值做比較,以判斷主機收到的ROM數據是否正確。?
3DS18B20的測溫原理
DS18B20的測溫原理如圖2所示,圖中低溫度系數晶振的振蕩頻率受溫度的影響很小〔1〕,用于產生固定頻率的脈沖信號送給減法計數器1,高溫度系數晶振隨溫度變化其震蕩頻率明顯改變,所產生的信號作為減法計數器2的脈沖輸入,圖中還隱含著計數門,當計數門打開時,DS18B20就對低溫度系數振蕩器產生的時鐘脈沖后進行計數,進而完成溫度測量。計數門的開啟時間由高溫度系數振蕩器來決定,每次測量前,首先將-55 ℃所對應的基數分別置入減法計數器1和溫度寄存器中,減法計數器1和溫度寄存器被預置在?-55 ℃?所對應的一個基數值。減法計數器1對低溫度系數晶振產生的脈沖信號進行減法計數,當減法計數器1的預置值減到0時溫度寄存器的值將加1,減法計數器1的預置將重新被裝入,減法計數器1重新開始對低溫度系數晶振產生的脈沖信號進行計數,如此循環直到減法計數器2計數到0時,停止溫度寄存器值的累加,此時溫度寄存器中的數值即為所測溫度。圖2中的斜率累加器用于補償和修正測溫過程中的非線性,其輸出用于修正減法計數器的預置值,只要計數門仍未關閉就重復上述過程,直至溫度寄存器值達到被測溫度值,這就是DS18B20的測溫原理。
另外,由于DS18B20單線通信功能是分時完成的,他有嚴格的時隙概念,因此讀寫時序很重要。系統對DS18B20的各種操作必須按協議進行。操作協議為:初始化DS18B20(發復位脈沖)→發ROM功能命令→發存儲器操作命令→處理數據。各種操作的時序圖與DS1820相同,可參看文獻〔2〕。?
4DS18B20與單片機的典型接口設計
以MCS51單片機為例,圖3中采用寄生電源供電方式, P1?1口接單線總線為保證在有效的DS18B20時鐘周期內提供足夠的電流,可用一個MOSFET管和89C51的P1?0來完成對總線的上拉〔2〕。當DS18B20處于寫存儲器操作和溫度A/D變換操作時,總線上必須有強的上拉,上拉開啟時間最大為10 μs。采用寄生電源供電方式是VDD和GND端均接地。由于單線制只有一根線,因此發送接收口必須是三態的。主機控制DS18B20完成溫度轉換必須經過3個步驟:初始化、ROM操作指令、存儲器操作指令。假設單片機系統所用的晶振頻率為12 MHz,根據DS18B20的初始化時序、寫時序和讀時序,分別編寫3個子程序:INIT為初始化子程序,WRITE為寫(命令或數據)子程序,READ為讀數據子程序,所有的數據讀寫均由最低位開始,實際在實驗中不用這種方式,只要在數據線上加一個上拉電阻4.7 kΩ,另外2個腳分別接電源和地。?
5DS18B20的精確延時問題
雖然DS18B20有諸多優點,但使用起來并非易事,由于采用單總線數據傳輸方式,DS18B20的數據I/O均由同一條線完成。因此,對讀寫的操作時序要求嚴格。為保證DS18B20的嚴格I/O時序,需要做較精確的延時。在DS18B20操作中,用到的延時有15 μs,90 μs,270 μs,540 μs等。因這些延時均為15 μs的整數倍,因此可編寫一個DELAY15(n)函數,源碼如下:
只要用該函數進行大約15 μs×N的延時即可。有了比較精確的延時保證,就可以對DS18B20進行讀寫操作、溫度轉換及顯示等操作。
3.2智能溫度傳感器發展的新趨勢
(1)提高測溫精度和分辨力
智能溫度傳感器,采用的是8位A/D轉換器,其測溫精度較低,分辨力只能達到1℃。目前國外已相繼推出多種高速度、高分辨力的智能溫度傳感器,所用的是9~12位A/D轉換器,分辨力一般可達0.5~0.0625℃。由美國DALLAS半導體公司新研制的DS1624型高分辨力智能溫度傳感器,能輸出13位二進制數據,其分辨力高達0.03125℃,測溫精度為±0.2℃。為了提高多通道智能溫度傳感器的轉換速率,也有的芯片采用高速逐次逼近式A/D轉換器。已AD7817型5通道智能溫度傳感器為例,它對本地傳感器、每一路遠程傳感器的轉換時間僅為27微秒、9微秒。
(2)增加測試功能
溫度傳感器的測試功能也在不斷增強。例如,DS1629型單線智能溫度傳感器增加了實時日歷時鐘(RTC),使其功能更加完善。DS1624還增加了存儲功能,利用芯片內部256字節的E*EPROM存儲器,可存儲用戶的短信息。另外,智能溫度傳感器正從單通道想多通道的方向發展,這為研制和開發多路溫度測控系統創造了良好條件。
傳感器都具有多種工作模式可供選擇,主要包括單次轉換模式、連續轉換模式、待機模式,有的還增加了低溫極限擴展模式,操作非常簡便。對某些智能溫度傳感器而言,主機(外部微處理器或單片機)還可通過相應的寄存器來設定其A/D轉換速率,分辨力及最大轉換時間。
你可以去/s?wd=%CE%C2%B6%C8%B4%AB%B8%D0%C6%F7%D4%AD%C0%ED&lm=0&si=&rn=10&ie=gb2312&ct=0&cl=3&f=1&rsp=8 上面看看。很多選擇。祝你好運
學術論文讀后感
學術論文讀后感
我讀的論文題目是《Progressive authentication: deciding when to authenticate on mobile phones》,這是一篇由中國計算機學會推薦的國際學術會議和期刊論文,發表在USENIX會議上。
該篇論文綜合論述了近年來手機驗證領域的一些新發展,并對當前手機認證方法的安全性和方便性問題提出了自己的看法和觀點。論文中指出傳統的驗證方法并不符合大部分手機用戶的需要,只用更加智能化的手段才是未來手機行業的發展趨勢。該論文觀點鮮明,論證清晰有力,論據充分可靠,數據準確,資料詳實,文獻綜述豐富而規范,其中論文關于手機安全驗證的方方面面都具有相當高的新的見解。下面簡單介紹如下:
一、安全性和可用性
論文對當前使用手機人群的滿意度進行了詳細的調查分析,發現有超過60%的手機用戶不會再手機上使用PIN。這種現象一方面是由于用戶覺得該驗證方法過于麻煩,另一方面也說明用戶對自身手機的安全性缺乏正確的認識。文中提到“All-or-nothing”的驗證方式,即或者全部驗證,或者全部不驗證,這也正是當前大多數手機的驗證方法,該方式也不能滿足人們對安全性和可用性的需求。 本文提到的驗證技術對手機行業來說并不是一種新的驗證方法,而是綜合分析當前所有的驗證方式后得到的一個結論:何時驗證以及對何種應用進行驗證。這正是該篇論文的意義所在,希望可以對手機驗證技術有一個很好的指導作用。在保證安全性的基礎上,盡可能的使用戶方便使用,這不僅是手機行業未來的發展方向,也應該是所有其他行業的發展趨勢,因此也可以相應的借鑒該論文中的觀點和理論。
二、多層驗證
在文中,提到了多層驗證的概念,即對于不同的手機應用,提供不同的驗證級別。例如:對于游戲、天氣等應用來說,可以對所有人進行開放,只要拿到手機就可以打開這些應用,也不會對手機所有者造成經濟損失;對于短信、電話、郵件等這些涉及個人隱私的應用,則應該設為私有的,當需要使用時,需要進行一部分的驗證;而對于銀行賬戶等涉及安全和財產方面的應用時,則應該給予最大的保密權限。
對于不同的驗證級別,每一個使用該手機的用戶的權限都是不太相同的。手機所有者在被系統識別為可信之后,可以方便的使用系統中所有或者大部分的手機應用,而無需進行驗證。對于那些初次使用手機的人來說,系統并不能識別他們的可信度,因此只能使用公開的手機應用,如果想要打開私有的或保密的應用,則需要其他的驗證方法。
該方案的提出在滿足安全性的基礎上,可以大幅度方便用戶的操作,已經超越了原有的“All-or-nothing”驗證方式。
三、實驗結果
論文對提出的理論進行了相應的實驗。該實驗的基本原理是在手機上安裝多種類型的傳感器,用于采集可信用戶的各種數據。例如:溫度傳感器可以采集用戶的體溫;聲音傳感器可以再用戶打電話時逐步采集用戶的聲音特征;視頻傳感器可以采集到用戶的生理特征等等。另外,文中還提到了一種新型的驗證方式,即設備間的驗證。在用戶的多個電子設備(如PC、Pad和手機)中通過藍牙建立連接,當手機在使用時,可以自動的檢測周圍是否存在這些已經連接的設備。如果系統發現無法連接到其他設備時,將會提高手機的安全級別,用戶需要使用涉及隱私的手機應用時,將會需要更多的身份驗證。
實驗的目標有以下四點:1、減少驗證開銷2、尋找安全性和便利性的折中3、對模型的安全性進行高低不同的推理邏輯4、很少的能量消耗。在安全性和便利性方面,文中提到了FR(False Rejection)和FA(False Authentication)兩個概念,即概率統計中“棄真”和“納假”。FR表示一個合法的用戶被不正確的要求身份驗證的概率,而FA表示一個不合法的用戶沒有被驗證的概率。在實驗中,作者自定義了一個變量R,當R越高時,表明用戶需要更高的便利性,這也會導致更多的FA;當R越低時,表明用戶需要更高的安全性,這也會導致更多的FR。
論文通過實驗最終證明該驗證技術可以滿足用戶安全性和便利性的需求。對于銀行賬戶等安全性級別要求高的應用來說,FA的比率一直為0,即絕不會出現非法用戶不經過驗證即使用這些應用的情況;而FR的比率一直在96%以上,即對于一個合法用戶,隨著R的升高,被錯誤的要求驗證的概率并沒有明顯的降低。
在論文最后,用實際的數據表明該技術消耗的能量很低,在可以接受的范圍
之內,這也為該技術的可行性研究提供了良好的基礎。
讀過該論文后,使我不僅了解了手機驗證領域的一些知識,而且也學習到了一篇經典論文的脈絡結構應該如何組織。這兩篇論文的結構嚴謹,層次分明,采用了遞進式的分析結構,邏輯性強,文筆流暢,表達清晰,重點突出。文章格式相當的符合學術規范,反映了作者很強的'科研能力。
另外,通過讀這篇論文,也使我認識和體會到了以下幾點:
1、一切事物的發展都是循序漸進的,手機行業發展到今天已經相當的輝煌。但是伴隨著事物的發展也會相應的提出一系列新的問題,我們要在遵循客觀規律的基礎上突出人的主觀能動性,而不要想著一蹴而就。
2、科研的道路是曲折的,但前途是光明的。
3、任何技術都有其優點和缺點。在論文中提到了很多新興的手機驗證技術,這些技術都各有所長,但卻都不是完美的。我們只有正視這些缺點,取長補短,才能促進手機驗證領域的更好更快發展。
4、手機驗證行業的價值。手機產業的高速發展,帶來了驗證技術的空前繁榮,但危害手機安全性的事件也在不斷發送,手機安全驗證的形勢是嚴峻的。我們應該從人的角度出發,以人為本,只有如此才能設計出更好的產品供用戶使用。
總之,正如一句名言所說:讀一本好書就像和一個高尚的人說話。我相信站在巨人的肩膀上才能有更高的成就,我以后要多讀書,讀好書,不斷提高科研水平和自身修養,盡量為中國的科研事業做出自己力所能及的貢獻。
傳感器論文。。急?。。。?!
淺談傳感器的現狀以及發展趨勢
2007-1-25 16:39:00 轉:中國工控展覽網 供稿
1 微型化(Micro)
為了能夠與信息時代信息量激增、要求捕獲和處理信息的能力日益增強的技術發展趨勢保持一致,對于傳感器性能指標(包括精確性、可靠性、靈敏性等)的要求越來越嚴格;與此同時,傳感器系統的操作友好性亦被提上了議事日程,因此還要求傳感器必須配有標準的輸出模式;而傳統的大體積弱功能傳感器往往很難滿足上述要求,所以它們已逐步被各種不同類型的高性能微型傳感器所取代;后者主要由硅材料構成,具有體積小、重量輕、反應快、靈敏度高以及成本低等優點。
1.1 由計算機輔助設計(CAD)技術和微機電系統(MEMS)技術引發的傳感器微型化
目前,幾乎所有的傳感器都在由傳統的結構化生產設計向基于計算機輔助設計(CAD)的模擬式工程化設計轉變,從而使設計者們能夠在較短的時間內設計出低成本、高性能的新型系統,這種設計手段的巨大轉變在很大程度上推動著傳感器系統以更快的速度向著能夠滿足科技發展需求的微型化的方向發展。
對于微機電系統(MEMS)的研究工作始于20世紀60年代,其研究范疇涉及材料科學、機械控制、加工與封裝工藝、電子技術以及傳感器和執行器等多種學科,是一個極具前景的新興研究領域。MEMS的核心技術是研究微電子與微機械加工與封裝技術的巧妙結合,期望能夠由此而制造出體積小巧但功能強大的新型系統。經過幾十年的發展,尤其最近十多年的研究與發展,MEMS技術已經顯示出了巨大的生命力,此項技術的有效采用將信息系統的微型化、智能化、多功能化和可靠性水平提高到了一個新的高度。在當前技術水平下,微切削加工技術已經可以生產出來具有不同層次的3D微型結構,從而可以生產出體積非常微小的微型傳感器敏感元件,象毒氣傳感器、離子傳感器、光電探測器這樣的以硅為主要構成材料的傳感/探測器都裝有極好的敏感元件[1],[2]。目前,這一類元器件已作為微型傳感器的主要敏感元件被廣泛應用于不同的研究領域中。
1.2 微型傳感器應用現狀
就當前技術發展現狀來看,微型傳感器已經對大量不同應用領域,如航空、遠距離探測、醫療及工業自動化等領域的信號探測系統產生了深遠影響;目前開發并進入實用階段的微型傳感器已可以用來測量各種物理量、化學量和生物量,如位移、速度/加速度、壓力、應力、應變、聲、光、電、磁、熱、PH值、離子濃度及生物分子濃度等
2 智能化(Smart)
智能化傳感器(Smart Sensor)是20世紀80年代末出現的另外一種涉及多種學科的新型傳感器系統。此類傳感器系統一經問世即刻受到科研界的普遍重視,尤其在探測器應用領域,如分布式實時探測、網絡探測和多信號探測方面一直頗受歡迎,產生的影響較大。
2.1 智能化傳感器的特點
智能化傳感器是指那些裝有微處理器的,不但能夠執行信息處理和信息存儲,而且還能夠進行邏輯思考和結論判斷的傳感器系統。這一類傳感器就相當于是微型機與傳感器的綜合體一樣,其主要組成部分包括主傳感器、輔助傳感器及微型機的硬件設備。如智能化壓力傳感器,主傳感器為壓力傳感器,用來探測壓力參數,輔助傳感器通常為溫度傳感器和環境壓力傳感器。采用這種技術時可以方便地調節和校正由于溫度的變化而導致的測量誤差,而環境壓力傳感器測量工作環境的壓力變化并對測定結果進行校正;而硬件系統除了能夠對傳感器的弱輸出信號進行放大、處理和存儲外,還執行與計算機之間的通信聯絡。
通常情況下,一個通用的檢測儀器只能用來探測一種物理量,其信號調節是由那些與主探測部件相連接著的模擬電路來完成的;但智能化傳感器卻能夠實現所有的功能,而且其精度更高、價格更便宜、處理質量也更好。與傳統的傳感器相比,智能化傳感器具有以下優點:
1.智能化傳感器不但能夠對信息進行處理、分析和調節,能夠對所測的數值及其誤差進行補償,而且還能夠進行邏輯思考和結論判斷,能夠借助于一覽表對非線性信號進行線性化處理,借助于軟件濾波器濾波數字信號。此外,還能夠利用軟件實現非線性補償或其它更復雜的環境補償,以改進測量精度。
2.智能化傳感器具有自診斷和自校準功能,可以用來檢測工作環境。當工作環境臨近其極限條件時,它將發出告警信號,并根據其分析器的輸入信號給出相關的診斷信息。當智能化傳感器由于某些內部故障而不能正常工作時,它能夠借助其內部檢測鏈路找出異?,F象或出了故障的部件。
3.智能化傳感器能夠完成多傳感器多參數混合測量,從而進一步拓寬了其探測與應用領域,而微處理器的介入使得智能化傳感器能夠更加方便地對多種信號進行實時處理。此外,其靈活的配置功能既能夠使相同類型的傳感器實現最佳的工作性能,也能夠使它們適合于各不相同的工作環境。
4.智能化傳感器既能夠很方便地實時處理所探測到的大量數據,也可以根據需要將它們存儲起來。存儲大量信息的目的主要是以備事后查詢,這一類信息包括設備的歷史信息以及有關探測分析結果的索引等;
5.智能化傳感器備有一個數字式通信接口,通過此接口可以直接與其所屬計算機進行通信聯絡和交換信息。此外,智能化傳感器的信息管理程序也非常簡單方便,譬如,可以對探測系統進行遠距離控制或者在鎖定方式下工作,也可以將所測的數據發送給遠程用戶等。
2.2 智能化傳感器的發展與應用現狀
目前,智能化傳感器技術正處于蓬勃發展時期,具有代表意義的典型產品是美國霍尼韋爾公司的ST-3000系列智能變送器和德國斯特曼公司的二維加速度傳感器,以及另外一些含有微處理器(MCU)的單片集成壓力傳感器、具有多維檢測能力的智能傳感器和固體圖像傳感器(SSIS)等。與此同時,基于模糊理論的新型智能傳感器和神經網絡技術在智能化傳感器系統的研究和發展中的重要作用也日益受到了相關研究人員的極大重視。
指出的一點是:目前的智能化傳感器系統本身盡管全都是數字式的,但其通信協議卻仍需借助于4~20 mA的標準模擬信號來實現。一些國際性標準化研究機構目前正在積極研究推出相關的通用現場總線數字信號傳輸標準;不過,在眼下過渡階段仍大多采用遠距離總線尋址傳感器(HART)協議,即Highway Addressable Remote Transducer。這是一種適用于智能化傳感器的通信協議,與目前使用4~20mA模擬信號的系統完全兼容,模擬信號和數字信號可以同時進行通信,從而使不同生產廠家的產品具有通用性。
能化傳感器多用于壓力、力、振動沖擊加速度、流量、溫濕度的測量,如美國霍尼韋爾公司的ST3000系列全智能變送器和德國斯特曼公司的二維加速度傳感器就屬于這一類傳感器。另外,智能化傳感器在空間技術研究領域亦有比較成功的應用實例[6]。
發展中,智能化傳感器無疑將會進一步擴展到化學、電磁、光學和核物理等研究領域??梢灶A見,新興的智能化傳感器將會在關系到全人類國民生的各個領域發揮越來越大作用。
3 多功能傳感器(Multifunction)
如前所述,通常情況下一個傳感器只能用來探測一種物理量,但在許多應用領域中,為了能夠完美而準確地反映客觀事物和環境,往往需要同時測量大量的物理量。由若干種敏感元件組成的多功能傳感器則是一種體積小巧而多種功能兼備的新一代探測系統,它可以借助于敏感元件中不同的物理結構或化學物質及其各不相同的表征方式,用單獨一個傳感器系統來同時實現多種傳感器的功能。隨著傳感器技術和微機技術的飛速發展,目前已經可以生產出來將若干種敏感元件綜裝在同一種材料或單獨一塊芯片上的一體化多功能傳感器。
3.1 多功能傳感器的執行規則和結構模式
概括來講,多功能傳感器系統主要的執行規則和結構模式包括:
(1) 多功能傳感器系統由若干種各不相同的敏感元件組成,可以用來同時測量多種參數。譬如,可以將一個溫度探測器和一個濕度探測器配置在一起(即將熱敏元件和濕敏元件分別配置在同一個傳感器承載體上)制造成一種新的傳感器,這樣,這種新的傳感器就能夠同時測量溫度和濕度。
(2) 將若干種不同的敏感元件精巧地制作在單獨的一塊硅片中,從而構成一種高度綜合化和小型化的多功能傳感器。由于這些敏感元件是被綜裝在同一塊硅片中的,它們無論何時都工作在同一種條件下,所以很容易對系統誤差進行補償和校正。
(3)借助于同一個傳感器的不同效應可以獲得不同的信息。以線圈為例,它所表現出來的電容和電感是各不相同的。
(4)在不同的激勵條件下,同一個敏感元件將表現出來不同的特征。而在電壓、電流或溫度等激勵條件均不相同的情況下,由若干種敏感元件組成的一個多功能傳感器的特征可想而知將會是多么的千差萬別!有時候簡直就相當于是若干個不同的傳感器一樣,其多功能特征可謂名副其實。
3.2 多功能傳感器的研制與應用現狀
多功能傳感器無疑是當前傳感器技術發展中一個全新的研究方向,日前有許多學者正在積極從事于該領域的研究工作。如將某些類型的傳感器進行適當組合而使之成為新的傳感器,如用來測量流體壓力和互異壓力的組合傳感器。又如,為了能夠以較高的靈敏度和較小的粒度同時探測多種信號,微型數字式三端口傳感器可以同時采用熱敏元件、光敏元件和磁敏元件;這種組配方式的傳感器不但能夠輸出模擬信號,而且還能夠輸出頻率信號和數字信號.
從目前的發展現狀來看,最熱門的研究領域也許是各種類型的仿生傳感器了,而且在感觸、刺激以及視聽辨別等方面已有最新研究成果問世。從實用的角度考慮,多功能傳感器中應用較多的是各種類型的多功能觸覺傳感器,譬如人造皮膚觸覺傳感器就是其中之一,這種傳感器系統由PVDF材料、無觸點皮膚敏感系統以及具有壓力敏感傳導功能的橡膠觸覺傳感器等組成。據悉,美國MERRITT公司研制開發的無觸點皮膚敏感系統獲得了較大的成功,其無觸點超聲波傳感器、紅外輻射引導傳感器、薄膜式電容傳感器、以及溫度、氣體傳感器等在美國本土應用甚廣。
與其它方面的研究成果相比,目前在人工嗅覺方面的研究還似乎遠遠不盡人意。由于嗅覺元件接收到的判別信號是非常復雜的,其中總是混合著成千上萬種化學物質,這就使得嗅覺系統處理起這些信號來異常錯綜復雜。
人工嗅覺傳感系統的典型產品是功能各異的Electronic nose(電子鼻),近10多年來,該技術的發展很快,目前已有數種商品化的產品在國際市場流通,美、法、德、英等國家均有比較先進的電子鼻產品問世。
“電子鼻”系統通常由一個交叉選擇式氣體傳感器陣列和相關的數據處理技術組成,并配以恰當的模式識別系統,具有識別簡單和復雜氣味的能力,主要用來解決一般情況下的氣味探測問題。根據應用對象的不同,“電子鼻”系統傳感器陣列中傳感器的構成材料及配置數量亦有所不同,其中,構成材料包括金屬氧化物半導體、導電聚合物、石英晶振等,配置數量則從幾個到數十個不等。總之,“電子鼻”系統是氣體傳感器技術和信息處理技術進行有效結合的高科技產物,其氣體傳感器的體積很小,功耗也很低,能夠方便地捕獲并處理氣味信號。氣流經過氣體傳感器陣列進入到“電子鼻”系統的信號預處理元件中,最后由陣列響應模式來確定其所測氣體的特征。陣列響應模式采用關聯法、最小二乘法、群集法以及主要元素分析法等方法對所測氣體進行定性和定量鑒別。美國Cyranosciences公司生產的Cyranose 320電子鼻是目前技術較為先進、適用范圍也比較廣的嗅覺傳感系統之一,該系統主要由傳感器陣列和數據分析算法兩部分組成,其基本技術是將若干個獨特的薄膜式碳-黑聚合物復合材料化學電阻器配置成一個傳感器陣列,然后采用標準的數據分析技術,通過分析由此傳感器陣列所收集到的輸出值的辦法來識別未知分析物。據稱,Cyranose 320電子鼻的適用范圍包括食品與飲料的生產與保鮮、環境保護、化學品分析與鑒定、疾病診斷與醫藥分析以及工業生產過程控制與消費品的監控與管理等。
4 無線網絡化(wireless networked)
無線網絡對我們來說并不陌生,比如手機,無線上網,電視機。傳感器對我們來說也不陌生,比如溫度傳感器、壓力傳感器,還有比較新穎的氣味傳感器。但是,把二者結合在起來,提出無線傳感器網絡(Wireless Sensor Networks)這個概念,卻是近幾年才發生的事情。
這個網絡的主要組成部分就是一個個可愛的傳感器節點。說它們可愛,是因為它們的體積都非常小巧。這些節點可以感受溫度的高低、濕度的變化、壓力的增減、噪聲的升降。更讓人感興趣的是,每一個節點都是一個可以進行快速運算的微型計算機,它們將傳感器收集到的信息轉化成為數字信號,進行編碼,然后通過節點與節點之間自行建立的無線網絡發送給具有更大處理能力的服務器
4.1 傳感器網絡
傳感器網絡是當前國際上備受關注的、由多學科高度交叉的新興前沿研究熱點領域。傳感器網絡綜合了傳感器技術、嵌入式計算技術、現代網絡及無線通信技術、分布式信息處理技術等,能夠通過各類集成化的微型傳感器協作地實時監測、感知和采集各種環境或監測對象的信息,通過嵌入式系統對信息進行處理,并通過隨機自組織無線通信網絡以多跳中繼方式將所感知信息傳送到用戶終端。從而真正實現“無處不在的計算”理念。傳感器網絡的研究采用系統發展模式,因而必須將現代的先進微電子技術、微細加工技術、系統SOC(system-on-chip)芯片設計技術、納米材料與技術、現代信息通訊技術、計算機網絡技術等融合,以實現其微型化、集成化、多功能化及系統化、網絡化,特別是實現傳感器網絡特有的超低功耗系統設計。傳感器網絡具有十分廣闊的應用前景,在軍事國防、工農業、城市管理、生物醫療、環境監測、搶險救災、防恐反恐、危險區域遠程控制等許多領域都有重要的科研價值和巨大實用價值,已經引起了世界許多國家軍界、學術界和工業界的高度重視,并成為進入2000 年以來公認的新興前沿熱點研究領域,被認為是將對二十一世紀產生巨大影響力的技術之一。
4.2 傳感器網絡研究熱點問題和關鍵技術
傳感器網絡以應用為目標,其構建是一個龐大的系統工程,涉及到的研究工作和需要解決的問題在每一個層面上都很多。對無線傳感器網絡系統結構及界面接口技術的研究意義重大。如果我們把傳感器網絡按其功能抽象成五個層次的話,將會包括基礎層(傳感器集合)、網絡層(通信網絡)、中間件層、數據處理和管理層以及應用開發層。
其中,基礎層以研究新型傳感器和傳感系統為核心,包括應用新的傳感原理、使用新的材料以及采用新的結構設計等,以降低能耗、提高敏感性、選擇性、響應速度、動態范圍、準確度、穩定性以及在惡劣環境條件下工作的能力。
4.3 傳感器網絡的應用研究
傳感器網絡有著巨大的應用前景,被認為是將對21 世紀產生巨大影響力的技術之一。已有和潛在的傳感器應用領域包括:軍事偵察、環境監測、醫療、建筑物監測等等。隨著傳感器技術、無線通信技術、計算技術的不斷發展和完善,各種傳感器網絡將遍布我們生活環境,從而真正實現“無處不在的計算”。以下簡要介紹傳感器網絡的一些應用。
(1)軍事應用
傳感器網絡研究最早起源于軍事領域,實驗系統有海洋聲納監測的大規模傳感器網絡,也有監測地面物體的小型傳感器網絡?,F代傳感器網絡應用中,通過飛機撒播、特種炮彈發射等手段,可以將大量便宜的傳感器密集地撒布于人員不便于到達的觀察區域如敵方陣地內,收集到有用的微觀數據;在一部分傳感器因為遭破壞等原因失效時,傳感器網絡作為整傳感器網絡體仍能完成觀察任務。傳感器網絡的上述特點使得它具有重大軍事價值,可以應用于如下一些場景中:
▉監測人員、裝備等情況以及單兵系統:通過在人員、裝備上附帶各種傳感器,可以讓各級指揮員比較準確、及時地掌握己方的保存狀態。通過在敵方陣地部署各種傳感器,可以了解敵方武器部署情況,為己方確定進攻目標和進攻路線提供依據。
▉監測敵軍進攻:在敵軍駐地和可能的進攻路線上部署大量傳感器,從而及時發現敵軍的進攻行動、爭取寶貴的應對時間。并可根據戰況快速調整和部署新的傳感器網絡。
▉評估戰果:在進攻前后,在攻擊目標附近部署傳感器網絡,從而收集目標被破壞程度的數據。
▉核能、生物、化學攻擊的偵察:借助于傳感器網絡可以及早發現己方陣地上的生、化污染,提供快速反應時間從而減少損失。不派人員就可以獲取一些核、生、化爆炸現場的詳細數據。
(2)環境應用
應用于環境監測的傳感器網絡,一般具有部署簡單、便宜、長期不需更換電池、無需派人現場維護的優點。通過密集的節點布置,可以觀察到微觀的環境因素,為環境研究和環境監測提供了嶄新的途徑傳感器網絡研究在環境監測領域已經有很多的實例。這些應用實例包括:對海島鳥類生活規律的觀測;氣象現象的觀測和天氣預報;森林火警;生物群落的微觀觀測等
▉洪災的預警:通過在水壩、山區中關鍵地點合理地布置一些水壓、土壤濕度等傳感器,可以在洪災到來之前發布預警信息,從而及時排除險情或者減少損失。
▉農田管理:通過在農田部署一定密度的空氣溫度、土壤濕度、土壤肥料含量、光照強度、風速等傳感器,可以更好地對農田管理微觀調控,促進農作物生長。
(3)家庭應用
建筑及城市管理各種無線傳感器可以靈活方便地布置于建筑物內,獲取室內環境參數,從而為居室環境控制和危險報警提供依據。
▉ 智能家居:通過布置于房間內的溫度、濕度、光照、空氣成分等無線傳感器,感知居室不同部分的微觀狀況,從而對空調、門窗以及其他家電進行自動控制,提供給人們智能、舒適的居住環境[16]。
▉建筑安全:通過布置于建筑物內的圖像、聲音、氣體檢測、溫度、壓力、輻射等傳感器,發現異常事件及時報警,自動啟動應急措施。
▉智能交通:通過布置于道路上的速度、識別傳感器,監測交通流量等信息,為出行者提供信息服務,發現違章能及時報警和記錄[17]。反恐和公共安全通過特殊用途的傳感器,特別是生物化學傳感器監測有害物、危險物的信息,最大限度地減少其對人民群眾生命安全造成的傷害。
(4)結論
無線傳感器網絡有著十分廣泛的應用前景,它不僅在工業、農業、軍事、環境、醫療等傳統領域有具有巨大的運用價值,在未來還將在許多新興領域體現其優越性,如家用、保健、交通等領域。我們可以大膽的預見,將來無線傳感器網絡將無處不在,將完全融入我們的生活。比如微型傳感器網最終可能將家用電器、個人電腦和其他日常用品同互聯網相連,實現遠距離跟蹤,家庭采用無線傳感器網絡負責安全調控、節電等。無線傳感器網絡將是未來的一個無孔不入的十分龐大的網絡,其應用可以涉及到人類日常生活和社會生產活動的所有領域。但是,我們還應該清楚的認識到,無線傳感器網絡才剛剛開始發展,它的技術、應用都還還遠談不上成熟,國內企業應該抓住商機,加大投入力度,推動整個行業的發展。
無線傳感器網絡是新興的通信應用網絡,其應用可以涉及到人類生活和社會活動的所有領域。因此,無線傳感器網絡將是未來的一個無孔不入的十分龐大的網絡,需要各種技術支撐。目前,成熟的通信技術都可能經過適當的改進和進一步發展,應用到無線傳感器網絡中,形成新的市場增長點,創造無線通信的新天地。
5 結語
當前技術水平下的傳感器系統正向著微小型化、智能化、多功能化和網絡化的方向發展。今后,隨著CAD技術、MEMS技術、信息理論及數據分析算法的繼續向前發展,未來的傳感器系統必將變得更加微型化、綜合化、多功能化、智能化和系統化。在各種新興科學技術呈輻射狀廣泛滲透的當今社會,作為現代科學“耳目”的傳感器系統,作為人們快速獲取、分析和利用有效信息的基礎,必將進一步得到社會各界的普遍關注。
微波傳感器依靠微波的很多優點,將廣泛地用于微波通訊、衛星發送等無線通訊,和雷達、導彈誘導、遙感、射電望遠鏡中。并且在一些非接觸式的監測和控制中也有很好的應用。
好了,關于“溫度傳感器論文”的話題就講到這里了。希望大家能夠通過我的講解對“溫度傳感器論文”有更全面、深入的了解,并且能夠在今后的工作中更好地運用所學知識。

請添加微信號咨詢:19071507959
最新更新
推薦閱讀
猜你喜歡
關注我們

各地成考
成考專業
成考學校
成考報名
成考考試
成考畢業
成考資料
成考指南
成考攻略
網站首頁






